87
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Divergent decomposition pathways of DMSO mediated by solvents and additives

, , , , , , & show all
Pages 315-329 | Received 06 Sep 2023, Accepted 18 Oct 2023, Published online: 09 Nov 2023
 

KEYWORDS

DMSO (dimethyl sulfoxide) plays an increasingly significant role in various synthetic processes by generating diverse active intermediates in situ, which actively participate in reactions. It is crucial to control the formation of these active intermediates to prevent their mutual interference during utilization. Our previous research identified methyl methanethiosulfonate (MMTS) as a major decomposition product of DMSO when catalyzed by small amounts of (COCl)2 in CH3CN. In the current study, we investigated how different solvents and additives can mediate the formation of MMTS. Complete avoidance of MMTS formation was achieved in 1,4-dioxane, while only trace amounts were observed in toluene, MTHF, or CHCl3. Moreover, the decomposition pathway of DMSO in these solvents was effectively mediated through the addition of strong acids (HX, where X = TfO, ClO4, I, Br, or Cl) or in the presence of LiI, CH3I, or Br2. The effects of solvents and additives on the decomposition of DMSO were explored. The possible mechanisms for the decomposition of DMSO under different conditions were proposed and discussed.

GRAPHICAL ABSTRACT

Disclosure statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

This work was supported by the National Natural Science Foundation of P.R. China [grant number 32130083].

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 683.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.