11,239
Views
76
CrossRef citations to date
0
Altmetric
Editorial

The role of additive manufacturing and antimicrobial polymers in the COVID-19 pandemic

&
Pages 477-481 | Received 24 Mar 2020, Accepted 14 Apr 2020, Published online: 30 Apr 2020

Figures & data

Figure 1. Theoretical mechanisms for the enhanced antimicrobial behavior of additive manufacturing polymers. (a) Copper nanoparticles on a polymer structure present a stronger antimicrobial effect than microparticles or metal surfaces. Antimicrobial polymers facilitate the process of attaching the microorganism on the polymer surface triggering the diffusion of water through the polymer matrix. Water with dissolved oxygen reaches the surface of embedded metal nanoparticles allowing dissolution or corrosion processes releasing metal ions; metal ions reach the composite surface damaging the bacteria membrane. Afterward, metal ions can diffuse into the interior of the microorganism. (b) The antimicrobial mechanisms of nanoparticles of copper consist in producing cell membrane damage via copper ions that damage polyunsaturated fatty acid compromising the structure of the cell membrane and producing leakage of mobile cellular solutes resulting in cell death. The redox cycling between Cu2+ and Cu1+ can catalyze the production of highly reactive hydroxyl radicals, which can subsequently damage cell membrane lipids, proteins, DNA, RNA, and other biomolecules. Once copper and associated hydroxyl radicals are inside of the cell, it produces DNA denaturalization damaging helical structures. Copper also damage and alter proteins acting as a protein inactivator via RNA, useful to deactivate a wide range of viruses.

Table 1. Examples of open source critical medical devices.

Figure 2. The manufacturing process of antimicrobial critical medical devices using an antimicrobial polymer. The process starts with corn fermentation (corn to Lactic Acid), condensation (Lactide) and polymerization (Polylactic acid; PLA). The addition of copper nanocomposite additive to pellets at different concentrations allows the development of a multipurpose antimicrobial filament. The recyclable characteristics of this filament facilitate the production of new antimicrobial medical devices in austere environments.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.