246
Views
30
CrossRef citations to date
0
Altmetric
Article

Universal existence of fluorescent carbon dots in beer and assessment of their potential toxicity

, , , & ORCID Icon
Pages 160-173 | Received 24 May 2018, Accepted 03 Sep 2018, Published online: 09 Jan 2019
 

Abstract

Nanosized materials may produce adverse physiological effects or potential health risks due to their unique physical and chemical properties. Herein, the universal presence of fluorescent carbon dots (CDs) in commercial beers was confirmed through a systematic survey. The beer CDs were roughly spherically shaped in appearance and emitted bright blue fluorescence under ultraviolet light with quantum yields (QYs) ranging from 1.42% to 3.92%. Furthermore, digestion, biodistribution, and cytotoxicity assessments of CDs from Snow beer were conducted as an example. The CDs were significantly quenched during in vitro digestion. The dynamic distribution of CDs in mice showed that they easily accumulated in the intestine and liver, and more importantly, the beer CDs were found in the brain, which indicated that they were able to cross the blood–brain barrier. Acute toxicity of the beer CDs was evaluated using BALB/c mice, and the results revealed that the biochemical parameters of mice after administration of a single dose of 2 g kg−1 body weight were almost same as those of the control groups. Histological analysis showed no obvious organ damage in the tested mice. The in vitro results indicated that CDs dispersed onto both the cell membrane and the cytoplasm of MC3T3-E1 cells, alter the cell cycle progression, and caused cell apoptosis at high doses. This work reports the potential risk of CDs in beer and provides valuable information regarding CDs in food.

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

This work was supported by the National Natural Science Foundation of China [31601389], the Basic Research Program of Liaoning Education Department [2017J033] and the National Key Research and Development Project [2017YFD0400103, 2016YFD0400404].

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 547.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.