Publication Cover
Advances in Applied Ceramics
Structural, Functional and Bioceramics
Volume 117, 2018 - Issue 4
241
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Joining of SiC ceramic by using the liquid polyvinylphenylsiloxane

, &
Pages 212-216 | Received 02 Aug 2017, Accepted 09 Oct 2017, Published online: 25 Oct 2017
 

ABSTRACT

The joining of SiC ceramic using the liquid polyvinylphenylsiloxane at the high temperature was investigated. The characteristic evolution of polyvinylphenylsiloxane during heating process, shear strength and microstructure of joint were especially discussed. The results show that active groups Si-OH and CH=CH2 of polyvinylphenylsiloxane through cross-linking at low temperature (200°C) form the macromolecular structure, crosslinked polyvinylphenylsiloxane possess the higher ceramic yield and structure stability at high temperature. Shear strength of SiC joints increase with the joining temperature from 1000 to 1200°C, and then decrease when the joining temperature reaches to 1350°C. Combination with microstructure of fine grains of SiO2 and SiC dispersion in the Si–O–C ceramic of the join layer and new phase SiC formation on the joint interface through the gas–solid reactions, the shear strength of joint achieves the maximum at 1200°C. The defects of joint increase with temperature higher than 1200°C, and the shear strength of joint begin to decrease.

Disclosure statement

No potential conflict of interest was reported by the authors.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access
  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart
* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.