185
Views
4
CrossRef citations to date
0
Altmetric
Articles

Correction of local deformations in free vibration analysis of ship deck structures by equivalent single layer elements

, &
Pages 135-147 | Received 05 Oct 2018, Accepted 18 Dec 2018, Published online: 02 Jan 2019
 

ABSTRACT

Equivalent single layer (ESL) elements provide an easy and computationally effective way to model stiffened plates in finite element analysis of ship structures. Secondary stiffeners are incorporated into the plate or shell formulation. In the free vibration analysis, these elements ignore inertia induced local deformation of plating between the secondary stiffeners. Oscillating motion causes inertia induced body load that locally deforms the plate. This local deformation may have a significant effect on the global modal frequencies of a deck structure. This paper presents a method for correcting ESL modal frequencies by modifying generalised mass and stiffness of the modes. The modification is based on the kinetic and strain energies of the local deformations. Energy components are derived from local consideration of plate in cylindrical bending under enforced support vibration. The method is validated in a case study of ship deck structure against shell mesh results, and good agreement is found.

Acknowledgements

The financial support is gratefully acknowledged.

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

This study was funded by Meyer Turku Oy.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 293.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.