439
Views
3
CrossRef citations to date
0
Altmetric
Articles

On prediction of slope failure time with the inverse velocity method

ORCID Icon, , , ORCID Icon & ORCID Icon
Pages 114-126 | Received 26 Apr 2022, Accepted 30 Sep 2022, Published online: 17 Nov 2022
 

ABSTRACT

The inverse velocity (INV) method is widely used for predicting the slope failure time. When applying the INV method, the inverse velocity can be assumed to be a linear and non-linear function of time, respectively, which are called linear and non-linear INV methods in this paper, respectively. Very few guidance is available in the literatures on the use of the two types of INV methods. In this paper, the performances of the linear and non-linear INV methods are assessed using a landslide database with 55 case histories. It is found that, two types of pitfalls may be encountered when applying the non-linear INV method, i.e. the saddle point and the ill-conditioned Hessian matrix. For the landslides examined in this paper, the linear INV method is free from the two pitfalls. When these pitfalls are encountered, the failure time predicted based on the non-linear INV methods may be significantly different from the actual slope failure time. For the landslides examined in this paper, the linear INV method is not only more stable, but also more accurate than the non-linear INV method. It is suggested that the linear INV method should be preferred over the non-linear INV method in future applications.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

This research was substantially supported by the National Natural Science Foundation of China (42072302, 52025094), Shuguang Program from Shanghai Education Development Foundation and Shanghai Municipal Education Commission (19SG19), and Fundamental Research Funds for the Central Universities.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 172.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.