770
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

Information content in data sets for a nucleated-polymerization model

, , , &
Pages 172-197 | Received 30 Nov 2014, Accepted 04 May 2015, Published online: 05 Jun 2015

Figures & data

Figure 1. The data sets of interest from [Citation9,Citation25]. The total polymerized mass is measured by Thioflavin T (ThT), which is one of the most common experimental tools for in vitro protein polymerization [Citation25,Citation29]. (available in colour online)

Figure 1. The data sets of interest from [Citation9,Citation25]. The total polymerized mass is measured by Thioflavin T (ThT), which is one of the most common experimental tools for in vitro protein polymerization [Citation25,Citation29]. (available in colour online)

Figure 2. Parametric representation for kon.

Figure 2. Parametric representation for kon.

Figure 3. Plots with simulated data: (a) correct cost function vs. time (γ=1); (b) incorrect cost function vs. time (γ=0).

Figure 3. Plots with simulated data: (a) correct cost function vs. time (γ=1); (b) incorrect cost function vs. time (γ=0).

Figure 4. Plots with simulated data: (a) correct cost function vs. model (γ=1); (b) incorrect cost function vs. model (γ=0).

Figure 4. Plots with simulated data: (a) correct cost function vs. model (γ=1); (b) incorrect cost function vs. model (γ=0).

Figure 5. (a) M(tk) (Madim) with OLS; (b) residuals vs. model: OLS.

Figure 5. (a) M(tk) (Madim) with OLS; (b) residuals vs. model: OLS.

Figure 6. (a) M(tk) with GLS, γ=1; (b) residuals vs. model: GLS.

Figure 6. (a) M(tk) with GLS, γ=1; (b) residuals vs. model: GLS.

Figure 7. Residuals for DS4 using different values of γ.

Figure 7. Residuals for DS4 using different values of γ.

Figure 8. Residuals for the four experimental data sets using γ=0.6.

Figure 8. Residuals for the four experimental data sets using γ=0.6.

Figure 9. (a) Sensitivity w.r.t. kI; (b) sensitivity w.r.t. kI+.

Figure 9. (a) Sensitivity w.r.t. kI−; (b) sensitivity w.r.t. kI+.

Figure 10. (a) Sensitivity w.r.t. konN; (b) sensitivity w.r.t. koffN.

Figure 10. (a) Sensitivity w.r.t. konN; (b) sensitivity w.r.t. koffN.

Figure 11. (a) Sensitivity w.r.t. konmin; (b) sensitivity w.r.t. koffmax.

Figure 11. (a) Sensitivity w.r.t. konmin; (b) sensitivity w.r.t. koffmax.

Figure 12. (a) Sensitivity w.r.t. x1; (b) sensitivity w.r.t. x2.

Figure 12. (a) Sensitivity w.r.t. x1; (b) sensitivity w.r.t. x2.

Figure 13. (a) Sensitivity w.r.t. imax; (b) sensitivity w.r.t. x11=imaxx1.

Figure 13. (a) Sensitivity w.r.t. imax; (b) sensitivity w.r.t. x11=imaxx1.

Figure 14. Two parameters estimation (kI+, kI). Bootstrapping distribution for kI+. We use GLS and M=1000 runs.

Figure 14. Two parameters estimation (kI+, kI−). Bootstrapping distribution for kI+. We use GLS and M=1000 runs.

Figure 15. Two parameters estimation (kI+, kI). Bootstrapping distribution for kI. We use GLS and M=1000 runs.

Figure 15. Two parameters estimation (kI+, kI−). Bootstrapping distribution for kI−. We use GLS and M=1000 runs.

Figure 16. Confidence intervals.

Figure 16. Confidence intervals.

Figure 17. Estimation for kI+, kI, and konN: bootstrapping distribution for kI for GLS and M=1000 runs.

Figure 17. Estimation for kI+, kI−, and konN: bootstrapping distribution for kI− for GLS and M=1000 runs.

Figure 18. Estimation for kI+, kI, and konN: bootstrapping distribution for kI+ for GLS and M=1000 runs.

Figure 18. Estimation for kI+, kI−, and konN: bootstrapping distribution for kI+ for GLS and M=1000 runs.

Figure 19. Estimation for kI+, kI, and konN: bootstrapping distribution for konN for GLS and M=1000 runs.

Figure 19. Estimation for kI+, kI−, and konN: bootstrapping distribution for konN for GLS and M=1000 runs.

Figure 20. Three parameters estimation (kI+, kI, and koffN): bootstrapping distribution for kI+. We used GLS and M=1000 runs.

Figure 20. Three parameters estimation (kI+, kI−, and koffN): bootstrapping distribution for kI+. We used GLS and M=1000 runs.

Figure 21. Three parameters estimation (kI+, kI, and koffN): bootstrapping distribution for kI. We used GLS and M=1000 runs.

Figure 21. Three parameters estimation (kI+, kI−, and koffN): bootstrapping distribution for kI−. We used GLS and M=1000 runs.

Figure 22. Three parameters estimation (kI+, kI and koffN): bootstrapping distribution for koffN. We used GLS and M=1000 runs.

Figure 22. Three parameters estimation (kI+, kI− and koffN): bootstrapping distribution for koffN. We used GLS and M=1000 runs.