990
Views
4
CrossRef citations to date
0
Altmetric
Research Article

A delay non-autonomous model for the combined effects of fear, prey refuge and additional food for predator

, , &
Pages 580-622 | Received 18 Sep 2020, Accepted 25 Oct 2021, Published online: 17 Nov 2021

Figures & data

Table 1. Biological meanings of parameters involved in system (Equation1) and their values used for numerical simulations.

Figure 1. Variations of prey (first column) and predator (second column) densities in system (Equation1) with respect to (a) k, (b) m and (c) A. Rest of the parameters are at the same values as in Table .

Figure 1. Variations of prey (first column) and predator (second column) densities in system (Equation1(1) dNdt=r0N1+kP−r1N2−α(1−mP)NPθ+ξηA+b(1−mP)N+cP,dPdt=β{α(1−mP)N+ηA}Pθ+ξηA+b(1−mP)N+cP−dP.(1) ) with respect to (a) k, (b) m and (c) A. Rest of the parameters are at the same values as in Table 1.

Figure 2. Surface plots of prey (first column) and predator (second column) populations in system (Equation1) with respect to (a) m and k, (b) A and k, and (c) A and m. Rest of the parameters are at the same values as in Table .

Figure 2. Surface plots of prey (first column) and predator (second column) populations in system (Equation1(1) dNdt=r0N1+kP−r1N2−α(1−mP)NPθ+ξηA+b(1−mP)N+cP,dPdt=β{α(1−mP)N+ηA}Pθ+ξηA+b(1−mP)N+cP−dP.(1) ) with respect to (a) m and k, (b) A and k, and (c) A and m. Rest of the parameters are at the same values as in Table 1.

Figure 3. (a) Semi-relative sensitivity and (b) logarithmic sensitivity solutions of system (Equation1) with respect to k, m and A. Parameters are at the same values as in Table  except m = 0.9 and A = 0.7.

Figure 3. (a) Semi-relative sensitivity and (b) logarithmic sensitivity solutions of system (Equation1(1) dNdt=r0N1+kP−r1N2−α(1−mP)NPθ+ξηA+b(1−mP)N+cP,dPdt=β{α(1−mP)N+ηA}Pθ+ξηA+b(1−mP)N+cP−dP.(1) ) with respect to k, m and A. Parameters are at the same values as in Table 1 except m = 0.9 and A = 0.7.

Figure 4. Phase portraits of system (Equation1) for r0=0.5, α=0.36, θ=0.6 and β=0.3. Rest of the parameters are at the same values as in Table  except in (a) r1=0.02, k = m = A = 0, (b) r1=0.02, k = 10, m = A = 0, (c) r1=0.02, m = 0.13, k = A = 0, and (d) r1=0.02, ξ=0.3, η=0.4, A = 7, k = m = 0.

Figure 4. Phase portraits of system (Equation1(1) dNdt=r0N1+kP−r1N2−α(1−mP)NPθ+ξηA+b(1−mP)N+cP,dPdt=β{α(1−mP)N+ηA}Pθ+ξηA+b(1−mP)N+cP−dP.(1) ) for r0=0.5, α=0.36, θ=0.6 and β=0.3. Rest of the parameters are at the same values as in Table 1 except in (a) r1=0.02, k = m = A = 0, (b) r1=0.02, k = 10, m = A = 0, (c) r1=0.02, m = 0.13, k = A = 0, and (d) r1=0.02, ξ=0.3, η=0.4, A = 7, k = m = 0.

Figure 5. Phase portraits of system (Equation1). Parameters are at the same values as in Table  except in (a) m = 0.2, (b) k = 0.01, m = 0.2, α=0.35, ξ=0.03, (c) m = 0.4 and (d) m = 0.2, A = 0.5.

Figure 5. Phase portraits of system (Equation1(1) dNdt=r0N1+kP−r1N2−α(1−mP)NPθ+ξηA+b(1−mP)N+cP,dPdt=β{α(1−mP)N+ηA}Pθ+ξηA+b(1−mP)N+cP−dP.(1) ). Parameters are at the same values as in Table 1 except in (a) m = 0.2, (b) k = 0.01, m = 0.2, α=0.35, ξ=0.03, (c) m = 0.4 and (d) m = 0.2, A = 0.5.

Figure 6. Bifurcation diagram of system (Equation1) with respect to (a) k, (b) m and (c) A. Rest of the parameters are at the same values as in Table  except in (a) ξ=0.03, α=0.35, m = 0.2 and (c) m = 0.2.

Figure 6. Bifurcation diagram of system (Equation1(1) dNdt=r0N1+kP−r1N2−α(1−mP)NPθ+ξηA+b(1−mP)N+cP,dPdt=β{α(1−mP)N+ηA}Pθ+ξηA+b(1−mP)N+cP−dP.(1) ) with respect to (a) k, (b) m and (c) A. Rest of the parameters are at the same values as in Table 1 except in (a) ξ=0.03, α=0.35, m = 0.2 and (c) m = 0.2.

Figure 7. Time series of system (Equation12) for different values of τ: (a) τ=4, (b) τ=15, (c) τ=25 and (d) τ=65. Parameters are at the same values as in Table , and the initial conditions are chosen as (2, 1).

Figure 7. Time series of system (Equation12(12) dNdt=r0N1+kP(t−τ)−r1N2−α(1−mP)NPθ+ξηA+b(1−mP)N+cP,dPdt=β{α(1−mP)N+ηA}Pθ+ξηA+b(1−mP)N+cP−dP.(12) ) for different values of τ: (a) τ=4, (b) τ=15, (c) τ=25 and (d) τ=65. Parameters are at the same values as in Table 1, and the initial conditions are chosen as (2, 1).

Figure 8. Time series of system (Equation12) for different values of τ: (a) τ=4, (b) τ=15, (c) τ=25 and (d) τ=65. Parameters are at the same values as in Figure (a), which shows oscillating behaviour of system (Equation1).

Figure 8. Time series of system (Equation12(12) dNdt=r0N1+kP(t−τ)−r1N2−α(1−mP)NPθ+ξηA+b(1−mP)N+cP,dPdt=β{α(1−mP)N+ηA}Pθ+ξηA+b(1−mP)N+cP−dP.(12) ) for different values of τ: (a) τ=4, (b) τ=15, (c) τ=25 and (d) τ=65. Parameters are at the same values as in Figure 5(a), which shows oscillating behaviour of system (Equation1(1) dNdt=r0N1+kP−r1N2−α(1−mP)NPθ+ξηA+b(1−mP)N+cP,dPdt=β{α(1−mP)N+ηA}Pθ+ξηA+b(1−mP)N+cP−dP.(1) ).

Figure 9. Bifurcation diagram of system (Equation12) with respect to τ. Parameters are at the same values as in Table .

Figure 9. Bifurcation diagram of system (Equation12(12) dNdt=r0N1+kP(t−τ)−r1N2−α(1−mP)NPθ+ξηA+b(1−mP)N+cP,dPdt=β{α(1−mP)N+ηA}Pθ+ξηA+b(1−mP)N+cP−dP.(12) ) with respect to τ. Parameters are at the same values as in Table 1.

Figure 10. Stability regions for the system (Equation12) in (a) kτ and (b) Aτ planes. Here, blue regions represent the stable coexistence equilibrium for corresponding values of the parameters and green regions represent otherwise. Rest of the parameters are at the same values as in Table .

Figure 10. Stability regions for the system (Equation12(12) dNdt=r0N1+kP(t−τ)−r1N2−α(1−mP)NPθ+ξηA+b(1−mP)N+cP,dPdt=β{α(1−mP)N+ηA}Pθ+ξηA+b(1−mP)N+cP−dP.(12) ) in (a) k−τ and (b) A−τ planes. Here, blue regions represent the stable coexistence equilibrium for corresponding values of the parameters and green regions represent otherwise. Rest of the parameters are at the same values as in Table 1.

Figure 11. Maximum Lyapunov exponent of the system (Equation12) at τ=65. Parameters are at the same values as in Table , and the initial conditions are chosen as (2, 1). In the figure, positive values of the maximum Lyapunov exponent confirm the occurrence of chaotic oscillation.

Figure 11. Maximum Lyapunov exponent of the system (Equation12(12) dNdt=r0N1+kP(t−τ)−r1N2−α(1−mP)NPθ+ξηA+b(1−mP)N+cP,dPdt=β{α(1−mP)N+ηA}Pθ+ξηA+b(1−mP)N+cP−dP.(12) ) at τ=65. Parameters are at the same values as in Table 1, and the initial conditions are chosen as (2, 1). In the figure, positive values of the maximum Lyapunov exponent confirm the occurrence of chaotic oscillation.

Figure 12. Time series solutions of system (Equation51) in the absence as well as presence of time delay. Parameters are at the same values as in Table , ω=2π/365 except in (a) k11=0.45, A = 0.6, τ=0, (b) k11=0.45, m = 0.2, A = 0.6, τ=0, (c) k = 0.8, k11=0.4, α=0.35, m = 0.2, ξ=0.03, τ=0, (d) k11=0.4, τ=4, (e) k = 0.4, k11=0.35, τ=65 and (f) k11=0.4, m = 0.2, τ=65.

Figure 12. Time series solutions of system (Equation51(51) dNdt=r0N1+k(t)P(t−τ)−r1N2−α(1−mP)NPθ+ξηA+b(1−mP)N+cP,dPdt=β{α(1−mP)N+ηA}Pθ+ξηA+b(1−mP)N+cP−dP.(51) ) in the absence as well as presence of time delay. Parameters are at the same values as in Table 1, ω=2π/365 except in (a) k11=0.45, A = 0.6, τ=0, (b) k11=0.45, m = 0.2, A = 0.6, τ=0, (c) k = 0.8, k11=0.4, α=0.35, m = 0.2, ξ=0.03, τ=0, (d) k11=0.4, τ=4, (e) k = 0.4, k11=0.35, τ=65 and (f) k11=0.4, m = 0.2, τ=65.