633
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Dynamic analysis of stochastic delay mutualistic system of leaf-cutter ants with stage structure and their fungus garden

, &
Pages 565-584 | Received 22 Jun 2021, Accepted 17 Mar 2022, Published online: 18 Jul 2022

Figures & data

Table 1. The meaning of some parameters.

Figure 1. The evolution of (x1(t),x2(t),y(t)) for model (Equation4) and its corresponding deterministic model (Equation3) with initial value (x1(0),x2(0),y(0))=(2,1,3): (a) time series diagram of x1(t),x2(t),y(t) in case 1: σ1=0.05,σ2=0.05,σ3=0.01 and (b) phase diagram of x1(t),x2(t),y(t) in case 1: σ1=0.04,σ2=0.03,σ3=0.02.

Figure 1. The evolution of (x1(t),x2(t),y(t)) for model (Equation4(4) {dx1(t)=(r1x2(t)y(t)−d1x1(t)−cx1(t))dt+σ1x1(t)dB1(t),dx2(t)=(cx1(t)−d2x2(t))dt+σ2x2(t)dB2(t),dy(t)=[r2ax2(t−τ)y(t−τ)m+m1y(t−τ)+m2x2(t−τ)−d3y(t)−r3x2(t)y(t)]dt+σ3y(t)dB3(t),(4) ) and its corresponding deterministic model (Equation3(3) {dx1(t)dt=r1x2(t)y(t)−d1x1(t)−cx1(t),dx2(t)dt=cx1(t)−d2x2(t),dy(t)dt=r2ax2(t−τ)y(t−τ)m+m1y(t−τ)+m2x2(t−τ)−d3y(t)−r3x2(t)y(t),(3) ) with initial value (x1(0),x2(0),y(0))=(2,1,3): (a) time series diagram of x1(t),x2(t),y(t) in case 1: σ1=0.05,σ2=0.05,σ3=0.01 and (b) phase diagram of x1(t),x2(t),y(t) in case 1: σ1=0.04,σ2=0.03,σ3=0.02.

Figure 2. The evolution of (x1(t),x2(t),y(t)) for model (Equation4) and its corresponding deterministic model (Equation3) with initial value (x1(0),x2(0),y(0))=(2,1,3): (a) time series diagram of x1(t),x2(t),y(t) in case 2:σ1=0.4,σ2=0.05,σ3=0.01; (b) phase diagram of x1(t),x2(t),y(t) in case 2:σ1=0.4,σ2=0.05,σ3=0.01; (c) time series diagram of x1(t),x2(t),y(t) in case 3:σ1=1.4,σ2=0.05,σ3=0.01; (d) phase diagram of x1(t),x2(t),y(t) in case 3:σ1=1.4,σ2=0.05,σ3=0.01.

Figure 2. The evolution of (x1(t),x2(t),y(t)) for model (Equation4(4) {dx1(t)=(r1x2(t)y(t)−d1x1(t)−cx1(t))dt+σ1x1(t)dB1(t),dx2(t)=(cx1(t)−d2x2(t))dt+σ2x2(t)dB2(t),dy(t)=[r2ax2(t−τ)y(t−τ)m+m1y(t−τ)+m2x2(t−τ)−d3y(t)−r3x2(t)y(t)]dt+σ3y(t)dB3(t),(4) ) and its corresponding deterministic model (Equation3(3) {dx1(t)dt=r1x2(t)y(t)−d1x1(t)−cx1(t),dx2(t)dt=cx1(t)−d2x2(t),dy(t)dt=r2ax2(t−τ)y(t−τ)m+m1y(t−τ)+m2x2(t−τ)−d3y(t)−r3x2(t)y(t),(3) ) with initial value (x1(0),x2(0),y(0))=(2,1,3): (a) time series diagram of x1(t),x2(t),y(t) in case 2:σ1=0.4,σ2=0.05,σ3=0.01; (b) phase diagram of x1(t),x2(t),y(t) in case 2:σ1=0.4,σ2=0.05,σ3=0.01; (c) time series diagram of x1(t),x2(t),y(t) in case 3:σ1=1.4,σ2=0.05,σ3=0.01; (d) phase diagram of x1(t),x2(t),y(t) in case 3:σ1=1.4,σ2=0.05,σ3=0.01.

Figure 3. The evolution of (x1(t),x2(t),y(t)) for model (Equation4) and its corresponding deterministic model (Equation3) with initial value (x1(0),x2(0),y(0))=(2,1,3): (a) time series diagram of x1(t),x2(t),y(t) in case 4: σ1=0.05,σ2=0.2,σ3=0.01; (b) phase diagram of x1(t),x2(t),y(t) in case 4:σ1=0.05,σ2=0.2,σ3=0.01; (c) time series diagram of x1(t),x2(t),y(t) in case 5: σ1=0.05,σ2=0.5,σ3=0.01 and (d) phase diagram of x1(t),x2(t),y(t) in case 5: σ1=0.05,σ2=0.5,σ3=0.01.

Figure 3. The evolution of (x1(t),x2(t),y(t)) for model (Equation4(4) {dx1(t)=(r1x2(t)y(t)−d1x1(t)−cx1(t))dt+σ1x1(t)dB1(t),dx2(t)=(cx1(t)−d2x2(t))dt+σ2x2(t)dB2(t),dy(t)=[r2ax2(t−τ)y(t−τ)m+m1y(t−τ)+m2x2(t−τ)−d3y(t)−r3x2(t)y(t)]dt+σ3y(t)dB3(t),(4) ) and its corresponding deterministic model (Equation3(3) {dx1(t)dt=r1x2(t)y(t)−d1x1(t)−cx1(t),dx2(t)dt=cx1(t)−d2x2(t),dy(t)dt=r2ax2(t−τ)y(t−τ)m+m1y(t−τ)+m2x2(t−τ)−d3y(t)−r3x2(t)y(t),(3) ) with initial value (x1(0),x2(0),y(0))=(2,1,3): (a) time series diagram of x1(t),x2(t),y(t) in case 4: σ1=0.05,σ2=0.2,σ3=0.01; (b) phase diagram of x1(t),x2(t),y(t) in case 4:σ1=0.05,σ2=0.2,σ3=0.01; (c) time series diagram of x1(t),x2(t),y(t) in case 5: σ1=0.05,σ2=0.5,σ3=0.01 and (d) phase diagram of x1(t),x2(t),y(t) in case 5: σ1=0.05,σ2=0.5,σ3=0.01.

Figure 4. The evolution of (x1(t),x2(t),y(t)) for model (Equation4) and its corresponding deterministic model (Equation3) with initial value (x1(0),x2(0),y(0))=(2,1,3): (a) time series diagram of x1(t),x2(t),y(t) in case 6:σ1=0.05,σ2=0.05,σ3=0.4; (b) phase diagram of x1(t),x2(t),y(t) in case 6:σ1=0.05,σ2=0.05,σ3=0.4; (c) time series diagram of x1(t),x2(t),y(t) in case 7:σ1=0.05,σ2=0.05,σ3=0.9; (d) phase diagram of x1(t),x2(t),y(t) in case 7:σ1=0.05,σ2=0.05,σ3=0.9.

Figure 4. The evolution of (x1(t),x2(t),y(t)) for model (Equation4(4) {dx1(t)=(r1x2(t)y(t)−d1x1(t)−cx1(t))dt+σ1x1(t)dB1(t),dx2(t)=(cx1(t)−d2x2(t))dt+σ2x2(t)dB2(t),dy(t)=[r2ax2(t−τ)y(t−τ)m+m1y(t−τ)+m2x2(t−τ)−d3y(t)−r3x2(t)y(t)]dt+σ3y(t)dB3(t),(4) ) and its corresponding deterministic model (Equation3(3) {dx1(t)dt=r1x2(t)y(t)−d1x1(t)−cx1(t),dx2(t)dt=cx1(t)−d2x2(t),dy(t)dt=r2ax2(t−τ)y(t−τ)m+m1y(t−τ)+m2x2(t−τ)−d3y(t)−r3x2(t)y(t),(3) ) with initial value (x1(0),x2(0),y(0))=(2,1,3): (a) time series diagram of x1(t),x2(t),y(t) in case 6:σ1=0.05,σ2=0.05,σ3=0.4; (b) phase diagram of x1(t),x2(t),y(t) in case 6:σ1=0.05,σ2=0.05,σ3=0.4; (c) time series diagram of x1(t),x2(t),y(t) in case 7:σ1=0.05,σ2=0.05,σ3=0.9; (d) phase diagram of x1(t),x2(t),y(t) in case 7:σ1=0.05,σ2=0.05,σ3=0.9.