113
Views
11
CrossRef citations to date
0
Altmetric
Articles

Impact of edible and non-edible biodiesel fuel properties and engine operation condition on the performance and emission characteristics of unmodified DI diesel engine

, , , , , , & show all
Pages 219-232 | Received 24 Jun 2015, Accepted 10 Dec 2015, Published online: 29 Jan 2016
 

ABSTRACT

The purpose of this work is to test the feasibility of biodiesel as a substitute for diesel used in a direct injection (DI) diesel engine. The biodiesel was produced by an esterification and transesterification process. Experiments were conducted with diesel–biodiesel blends containing 10 and 20% biodiesel with the diesel fuel. The results of the biodiesel blends are compared with baseline diesel which was assessed at constant speed in a single cylinder diesel engine at various loading conditions. The physicochemical properties of palm and Calophyllum inophyllum biodiesel and their blends meet the standard specification ASTM D6751 and EN 14214 standards. The maximum brake thermal efficiency was attained with diesel fuel, 10% palm biodiesel (PB10) and 10% C. inophyllum biodiesel (CI10) at all load condition except low load condition. Engine emission results showed that the 20% C. inophyllum with 80% diesel blend exhibited 6.35% lower amount of brake specific carbon monoxide, and the PB20 blend and CI20 blend reduced brake specific hydrocarbon emission by 7.93 and 9.5%, respectively. NOx emission from palm and C. inophyllum biodiesel blends are found to be 0.29–4.84% higher than diesel fuel. The lowest smoke intensity is found at 27.5% for PB10 and CI10 biodiesel blends compared with diesel fuel.

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

The authors appreciate University of Malaya for financial support through High Impact Research grant titled: ‘Development of Alternative and Renewable Energy Carrier (DAREC)’ [grant number UM.C/HIR/MOHE/ENG/60], [grant number FP051-2014B].

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 427.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.