138
Views
0
CrossRef citations to date
0
Altmetric
Articles

Hydrogenation of bio-oil in a needle-plate dielectric barrier discharge reactor

, , , &
Pages 775-783 | Received 10 Oct 2022, Accepted 23 Jan 2023, Published online: 31 Jan 2023
 

Abstract

A needle-plate dielectric barrier discharge reactor was constructed to achieve bio-oil hydrogenation under low temperature and normal pressure. According to the composition and content of rice husk bio-oil, seven model compounds were mixed up to prepare simulated bio-oil, and effects of operating voltage, gas flow rate and reaction time on the deoxygenation rate and high calorific value of simulated bio-oil were investigated. The results showed that the maximum deoxidation rate of 31.62% was achieved, with the high calorific value of bio-oil increased from 25.78 MJ/kg to 32.69 MJ/kg, and the pH value increased from 3.67 to 4.83, which confirmed the feasibility of using dielectric barrier discharge reaction to hydrogenate bio-oil under low temperature and normal pressure conditions. With energy consumption and energy conversion rate as indexes, the operation economy of bio-oil hydrogenation process in the needle-plate dielectric barrier discharge reactor was evaluated, calculation results showed that under the optimized operation conditions, energy consumption of 2.44 kW·h/kg and energy conversion rate of 40.87% were achieved.

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

This work was supported by the National Natural Science Foundation of China (51761145011), the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 427.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.