309
Views
12
CrossRef citations to date
0
Altmetric
Original Articles

Proper generalized decomposition for solving coupled heat and moisture transfer

, , &
Pages 295-311 | Received 19 Feb 2014, Accepted 03 Jun 2014, Published online: 15 Aug 2014
 

Abstract

This paper proposes a reduced order model to simulate heat and moisture behaviour of material based on proper general decomposition (PGD). This innovative method is an a priori model reduction method. It proposes an alternative way for computing solutions of the problem by considering a separated representation of the solution. PGD offers an interesting reduction of numerical cost. In this paper, the PGD solution is first compared with a finite element solution and the commercial validated model Delphin in an 1D case. The results show that the PGD resolution techniques enable the field of interest to be represented with accuracy, with a relative error rate of less than 0.1%. The study remains in the hygroscopic range of the material. As the numerical gain of the method becomes interesting when the space dimension increases, this resolution strategy was then used on a 2D multi-layered test case. The dynamics and amplitude of hygrothermal fields are perfectly represented by the PGD solution. Temperature and vapour pressure modelled with PGD can be used for post-processing and analysing the behaviour of an assembly.

Funding

The authors acknowledge the French National Research Agency (ANR) for funding this work through its Sustainable Buildings and Cities program (Humibatex project no. ANR-11-BVD).

Nomenclature

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 297.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.