1,910
Views
41
CrossRef citations to date
0
Altmetric
Nike Award Winner for Athletic Footwear Research

Identification of critical traction values for maximum athletic performance

&
Pages 127-138 | Received 03 Oct 2011, Accepted 08 Nov 2011, Published online: 08 Dec 2011
 

Abstract

The purpose of this study was to investigate the relationship between mechanically available footwear traction and performance in top-speed curved sprint running and maximum effort linear acceleration. Based on results from previous studies, it was hypothesized that performance would increase as available traction increased but only to a point after which performance would plateau and further increases in available traction would not affect performance. The goal of this study was to identify such critical traction values. Thirty-two recreational athletes performed maximum effort 2.3 m radius curve sprints and linear accelerations from a standing start using four identical mid-cut basketball shoes differing only in outsole traction. Available traction was modified by manipulating the outsole material. The traction coefficients of the test shoes, quantified with a portable traction tester on the actual test surface, were 0.26, 0.54, 0.82 and 1.13. Ground reaction forces and three-dimensional kinematics were quantified during the tests. Greater amounts of traction (both peak and average) were utilized as the mechanically available traction increased. Increases in available traction from 0.26 to 0.54 to 0.82 provided systematic performance advantages for both curved sprinting and linear acceleration. However, no further performance enhancements were detected when the available traction increased beyond 0.82. Increases in the use of available traction beyond a threshold of 0.82 were reflected in the peak but not the average utilized traction or overall ground reaction impulse generation.

Acknowledgements

The authors would like to thank Alberta Innovates Technology Futures and Li Ning Company Ltd for their financial support, adidas International for use of the portable traction testing machine, and Nike Inc. for providing the opportunity for us to share this work with fellow footwear researchers at the 2011 Footwear Biomechanics Symposium.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 340.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.