151
Views
18
CrossRef citations to date
0
Altmetric
Articles

Impact of biofouling in intake pipes on the hydraulics and efficiency of pumping capacity

, &
Pages 997-1003 | Received 15 Mar 2012, Accepted 25 Jun 2012, Published online: 17 Jul 2012
 

Abstract

Colonization of cooling water systems (CWS) by fouling organisms is a major concern for industries, power, and desalination plants over the world. Biofouling results in, depending on the dimensions of the biofouling species and growth patterns, an increased wall roughness and reduction of the inner pipe diameter. This leads to a significant head loss in the intake structure. To prevent settlement and growth of fouling species, an effective antifouling treatment is required. However, fouling mitigation must be applied from early start of operation of an installation, as several species cannot be fully mitigated (chemically) or removed (physically) after settlement, as some of them (e.g. barnacles, the Japanese oyster and Rock oyster) cement themselves to the surface. This means that even after a physical cleaning, part of the organisms remains on the surface, resulting in an irreversible increased head loss and a decreased pump capacity. To provide some clearance on the impact of biofouling on pump capacity in CWS, two cases have been studied. The results show that nonoptimal fouling treatments result in significant additional annual energy consumption. Even after complete physical cleaning, the remaining head loss is above the design line due to the increased wall roughness and results in decreased pump capacity. The results strongly emphasize the necessity to apply an effective biofouling control during the start-up of a water intake system prior to commercial operation, or to have system design parameters which take into account the irreversible effects of biofouling.

Notes

Presented at the International Conference onDesalination for the Environment, Clean Water and Energy, European Desalination Society, 23–26 April 2012, Barcelona, Spain

Log in via your institution

Log in to Taylor & Francis Online

There are no offers available at the current time.

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.