1,606
Views
11
CrossRef citations to date
0
Altmetric
Articles

The influence of carbonization temperature on the modification of TiO2 in the removal of methyl orange from aqueous solution by adsorption

, , &
Pages 18825-18835 | Received 13 Jul 2015, Accepted 11 Sep 2015, Published online: 30 Sep 2015

Figures & data

Fig. 1. Schematic presentation of installation setup for the synthesis of C–TiO2 [Citation21].

Notes: (1) Gas cylinder with argon, (2) controller, (3) Dreschel bottle with ethanol, (4) pipe furnace, (5) combustion boat with powder sample, and (6) scrubber.

Fig. 1. Schematic presentation of installation setup for the synthesis of C–TiO2 [Citation21].Notes: (1) Gas cylinder with argon, (2) controller, (3) Dreschel bottle with ethanol, (4) pipe furnace, (5) combustion boat with powder sample, and (6) scrubber.

Fig. 2. SEM of (a) unmodified TiO2, (b) C–TiO2-200, (c) C–TiO2-300, and (d) C–TiO2-400. The scale bar represents 500 nm.

Fig. 2. SEM of (a) unmodified TiO2, (b) C–TiO2-200, (c) C–TiO2-300, and (d) C–TiO2-400. The scale bar represents 500 nm.

Fig. 3. Nitrogen adsorption/desorption isotherm of (a) TiO2, (b) C–TiO2-200, (c) C–TiO2-300, and (d) C–TiO2-400.

Fig. 3. Nitrogen adsorption/desorption isotherm of (a) TiO2, (b) C–TiO2-200, (c) C–TiO2-300, and (d) C–TiO2-400.

Table 1 Textual properties of TiO2 and C–TiO2 adsorbents

Fig. 4. XRD patterns of the prepared adsorbents and TiO2 precursor.

Fig. 4. XRD patterns of the prepared adsorbents and TiO2 precursor.

Fig. 5. FTIR spectra of modified and unmodified TiO2, (a) C–TiO2-200, (b) C–TiO2-300, (c) C–TiO2-400, and (d) TiO2.

Fig. 5. FTIR spectra of modified and unmodified TiO2, (a) C–TiO2-200, (b) C–TiO2-300, (c) C–TiO2-400, and (d) TiO2.

Fig. 6. Time dependency of the adsorption of MO by C–TiO2 adsorbents. Solid and dashed lines represent the predicted qt values by PSO model.

Fig. 6. Time dependency of the adsorption of MO by C–TiO2 adsorbents. Solid and dashed lines represent the predicted qt values by PSO model.

Table 2 Obtained constants of PFO and PSO rate equations for the adsorption of MO onto C–TiO2 adsorbents

Fig. 7. Adsorption isotherm of MO onto TiO2 and C–TiO2 adsorbents at 25°C.

Fig. 7. Adsorption isotherm of MO onto TiO2 and C–TiO2 adsorbents at 25°C.

Table 3 Obtained isotherm constants for adsorption of MO onto TiO2 and C–TiO2 adsorbents

Fig. 8. Removal percentage of MO by (a) C–TiO2-200 (b) C–TiO2-300 and (c) C–TiO2-400 at different pH.

Fig. 8. Removal percentage of MO by (a) C–TiO2-200 (b) C–TiO2-300 and (c) C–TiO2-400 at different pH.

Fig. 9. MO structure at (a) acidic and (b) basic mediums.

Fig. 9. MO structure at (a) acidic and (b) basic mediums.

Fig. 10. ZPs of TiO2 and C–TiO2 adsorbents.

Fig. 10. ZPs of TiO2 and C–TiO2 adsorbents.

Fig. 11. Regeneration studies of C–TiO2 adsorbent.

Fig. 11. Regeneration studies of C–TiO2 adsorbent.

Fig. 12. The intraparticle diffusion plot for adsorption of MO onto (a) C–TiO2-200, (b) C–TiO2-300 and (c) C–TiO2-400.

Fig. 12. The intraparticle diffusion plot for adsorption of MO onto (a) C–TiO2-200, (b) C–TiO2-300 and (c) C–TiO2-400.