233
Views
19
CrossRef citations to date
0
Altmetric
Articles

Enhancement of mechanical and physical properties of electrospun PAN nanofiber membranes using PVDF particles

, &
Pages 26003-26013 | Received 03 Nov 2015, Accepted 18 Feb 2016, Published online: 16 Mar 2016
 

Abstract

In this study, polyacrylonitrile (PAN) nanofiber mats were fabricated using electrospinning method. Three hundred nanometers of polyvinylidene fluoride (PVDF) fine particles were used to enhance the mechanical strength and structural integrity of the as-spun nanofibrous membrane. As-spun nanofibrous mats were submerged in different concentrations of PVDF dispersions to incorporate PVDF particles among PAN nanofibers matrix. Subsequently, they were subjected to post-heat treatment at 177°C. The fused PVDF cemented the strings and welded the junctions that resulted in strengthening the fibers and enhancing its bonding together. The PVDF-cemented PAN (PVDF-c-PAN) membranes were characterized by scanning electron microscopy, dynamic mechanical analysis, porometry, and permeability analysis. Results showed good improvement in the membranes’ mechanical properties in terms of tensile strength and Young’s modulus. Comparing to as-spun PAN, the average increase in Young’s modulus and tensile strength in the PVDF-c-PAN membranes were 19.8 and 6.63 folds, respectively. However, the strain ratio decreased by 5.47 folds. The highest improvement was obtained by PVDF-c-PAN membrane at 0.01 wt.% PVDF and one second submersion time. In comparison with two different techniques that seek the same purpose, this technique is simpler, applicable, and time–cost saving.

Log in via your institution

Log in to Taylor & Francis Online

There are no offers available at the current time.

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.