1,474
Views
43
CrossRef citations to date
0
Altmetric
Original Articles

Temperature distribution effects on buckling behavior of smart heterogeneous nanosize plates based on nonlocal four-variable refined plate theory

&
Pages 119-143 | Received 21 Jun 2016, Accepted 08 Aug 2016, Published online: 20 Aug 2016

Figures & data

Figure 1. Geometry of FG nanoplate under magneto-electrical field.

Figure 1. Geometry of FG nanoplate under magneto-electrical field.

Table 1. Magneto-electro-thermo-elastic coefficients of material properties (Ramirez et al. [Citation3]).

Table 2. Comparison of dimensionless buckling load () of simply supported square FG nanoplates (a/h = 10).

Table 3. Variation of critical buckling temperature of FG nanoplate for various electric voltages and nonlocal parameters (a = b = 100 h, p = 1).

Table 4. Variation of critical buckling temperature of FG nanoplate for various magnetic potentials and nonlocal parameters (a = b = 100 h, p = 1).

Figure 2. Variation of critical buckling temperature of METE-FG nanoplate versus gradient index for various electric voltages and thermal loadings (a/= 100, µ = 1 nm2, Ω = 0*10-4).

Figure 2. Variation of critical buckling temperature of METE-FG nanoplate versus gradient index for various electric voltages and thermal loadings (a/h = 100, µ = 1 nm2, Ω = 0*10-4).

Figure 3. Variation of critical buckling temperature of METE-FG nanoplate versus gradient index for various magnetic potentials and thermal loadings (a/= 100, µ = 1 nm2, V = 0*10-4).

Figure 3. Variation of critical buckling temperature of METE-FG nanoplate versus gradient index for various magnetic potentials and thermal loadings (a/h = 100, µ = 1 nm2, V = 0*10-4).

Figure 4. Variation of critical buckling temperature of METE-FG nanoplate versus electric voltage for various nonlocal parameters and thermal loadings (a/= 100, p = 1, Ω = 0*10-4).

Figure 4. Variation of critical buckling temperature of METE-FG nanoplate versus electric voltage for various nonlocal parameters and thermal loadings (a/h = 100, p = 1, Ω = 0*10-4).

Figure 5. Variation of critical buckling temperature of METE-FG nanoplate versus magnetic potential for various nonlocal parameters and thermal loadings (a/= 100, p = 1, V = 0*10-4).

Figure 5. Variation of critical buckling temperature of METE-FG nanoplate versus magnetic potential for various nonlocal parameters and thermal loadings (a/h = 100, p = 1, V = 0*10-4).

Figure 6. Variation of critical buckling temperature of METE-FG nanoplate versus aspect ratio for various nonlocal parameters and thermal loadings (a/= 100, p = 1, V = Ω = 0*10-4).

Figure 6. Variation of critical buckling temperature of METE-FG nanoplate versus aspect ratio for various nonlocal parameters and thermal loadings (a/h = 100, p = 1, V = Ω = 0*10-4).

Figure 7. Variation of critical buckling temperature of MEE-FG nanoplate versus side-to-thickness ratio for various thermal loadings (a/= 1, p = 1, µ = 2 nm2, V = Ω = 0*10-4).

Figure 7. Variation of critical buckling temperature of MEE-FG nanoplate versus side-to-thickness ratio for various thermal loadings (a/b = 1, p = 1, µ = 2 nm2, V = Ω = 0*10-4).