278
Views
7
CrossRef citations to date
0
Altmetric
Articles

Finite element crack width computations with a thermo-hygro-mechanical-hydration model for concrete structures

, , , , , & show all
Pages 793-813 | Received 23 Sep 2013, Accepted 18 Feb 2014, Published online: 19 Mar 2014
 

Abstract

The paper presents an overview of a finite element approach for the analysis of the thermo-hygro-mechanical-hydration behaviour of concrete structures. The thermo-hygro component considers the mass balance equation of moisture as well as the enthalpy balance equation, and uses two primary variables, namely the capillary pressure and temperature. Heat of hydration is simulated using the approach of Schindler and Folliard. The basic mechanical model simulates directional cracking, rough crack closure and crushing using a plastic-damage-contact approach. Hydration dependency is introduced into the mechanical constitutive model. The material data from the Concrack benchmark are considered with the model. This includes data on adiabatic temperature changes during curing, changing elastic properties during curing, shrinkage and creep. The model, as implemented in the finite element program LUSAS, is used to analyse the Concrack benchmark beam RL1. Particular attention is paid to crack openings and the difference between predicted crack openings from analyses with and without time-dependent effects. It is concluded that ignoring time-dependent effects can result in a significant underestimate of crack openings in the working load range.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 229.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.