469
Views
52
CrossRef citations to date
0
Altmetric
Articles

Titania modified activated carbon prepared from sugarcane bagasse: adsorption and photocatalytic degradation of methylene blue under visible light irradiation

ORCID Icon, , , , &
Pages 3122-3136 | Received 12 Oct 2016, Accepted 28 Jan 2017, Published online: 01 Mar 2017
 

ABSTRACT

Activated carbon (AC), prepared from sugarcane bagasse waste through a low-temperature chemical carbonization treatment, was used as a support for nano-TiO2. TiO2 supported on AC (xTiO2–AC) catalysts (x = 10, 20, 50, and 70 wt.%) were prepared through a mechano-mixing method. The photocatalysts were characterized by Raman, X-ray diffraction analysis, FTIR, SBET, field emission scanning electron microscope, and optical technique. The adsorption and photo-activity of the prepared catalysts (xTiO2–AC) were evaluated using methylene blue (MB) dye. The photocatalytic degradation of MB was evaluated under UVC irradiation and visible light. The degradation percentage of the 100 ppm MB at neutral pH using 20TiO2–AC reaches 96 and 91 after 180 min under visible light and UV irradiation, respectively. In other words, these catalysts are more active under visible light than under UV light irradiation, opening the possibility of using solar light for this application.

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

This work was supported by the Egyptian Petroleum Research Institute (EPRI) Labs and Instruments.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 223.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.