320
Views
5
CrossRef citations to date
0
Altmetric
Research Articles

Microbially/CO2-derived CaCO3 cement and its microstructural and mechanical performance

&
Pages 1156-1168 | Published online: 20 Feb 2023
 

Abstract

Compared with the production of ordinary Portland cement (OPC) with large carbon emissions, biological carbon sequestration to prepare low-carbon cement can effectively decrease carbon dioxide (CO2) emissions, which can reduce the greenhouse effect, thereby reducing the frequency and intensity of climate disasters. Carbon-capturing bacteria (CCB) can capture atmospheric CO2 and convert it into bicarbonate ions, which can be combined with calcium ions to form CaCO3 cement that can partially replace OPC for dust control. This study compared the ability of two CCBs (Paenibacillus mucilaginosus and Streptomyces microflavus ) to capture CO2. The biomineralization efficiency of CaCO3 for P. mucilaginosus (39.34%) was much higher than that for S. microflavus (7.38%) in a Ca(NO3)2 solution in the concrete-curing room environment. The decomposition temperature of the CaCO3 crystals in DI was slightly higher than that of P. mucilaginosus and significantly higher than that of S. microflavus. When the spraying time was equal to three, 10% carbide sludge (CS) content was optimal according to the surface hardness (HD) of the consolidation layer of the sand samples. The CaCO3 mineralized by CCBs can be used to consolidate desert sand and dust in practical engineering applications.

Disclosure statement

The authors declare no conflict of interest.

Author contribution

XN collected, reviewed, and wrote the manuscript. QY contributed to conceive and revise the manuscript.

Data availability statement

The datasets and materials used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Additional information

Funding

The research described in this paper was financially supported by the Opening Funds of Jiangsu Key Laboratory of Construction Materials (grant No. CM2018-02) and the National Natural Science Foundation of China (Grant Nos. 51702238 and 52108300). Their financial support is gratefully acknowledged.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 108.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.