615
Views
15
CrossRef citations to date
0
Altmetric
Original Articles

Real-time freehand 3D ultrasound imaging

&
Pages 74-83 | Received 03 Nov 2015, Accepted 15 Mar 2016, Published online: 13 May 2016
 

Abstract

Real-time freehand 3D ultrasound (US) has attracted much attention in clinical practices because it provides interactive feedback to help the clinicians acquire not only high-quality images but also timely information of the scanning area, which is necessary in intraoperative examinations. In this study, we developed a real-time freehand 3D US imaging system which can obtain volume reconstruction and visualisation during data acquisition at real-time level. Based on two popular algorithms, i.e. squared distance weighted interpolation (SDW) and Bezier interpolation, we designed corresponding parallel computing methods that were implemented on the graphics processing unit (GPU) to incrementally reconstruct and display the tissues being scanned using Visualisation toolkits (VTK). With a typical B-scan image size of 302 × 268 at an acquisition rate of 25 Hz and a preset volume size of 90 × 81 × 192, the system achieved an incremental reconstruction-visualisation rate of up to 32 frames/s and 119 frames/s for the SDW and Bezier algorithms, respectively, achieving the real-time 3D US.

Funding

This work was partially supported by National Natural Science Foundation of China [grant number 61372007], [grant number 61571193]; International cooperation project of science and technology of Guangdong Province [grant number 2014A050503020]; Natural Science Foundation of Hubei Province [grant number 2015CFA025].

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access
  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart
* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.