1,654
Views
10
CrossRef citations to date
0
Altmetric
ARTICLES

Real-time headway state identification and saturation flow rate estimation: a hidden Markov Chain model

&
Pages 840-864 | Received 18 Mar 2019, Accepted 03 Jan 2020, Published online: 11 Feb 2020
 

Abstract

Saturation flow rate (SFR) denotes the maximum sustainable flow rate during the green signal. Calibration of SRF is not a problem that can be solved once and for all. Due to various reasons such as degrading infrastructure or changes in the surrounding environment, a well-calibrated SFR could become outdated and it is expensive to recalibrate following traditional methods. This manuscript proposes a model to calculate saturation flow rate in a real-time fashion from loop detector-data that is readily available. The problem is formulated as a Markov Chain model with the goal of identifying traffic headway states. A total of five states and the transitional behavior are defined. The distribution of headway given the underlying state is also presented. The SFR estimation is converted to the identification of stable headway. The proposed model is tested and validated, which shows the proposed model is able to generate satisfactory results.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

This research is supported by Zhejiang Province Public Welfare Scientific Research Project [grant number LGF18E080003].

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 594.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.