66
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

On Multiscale Variational and Streamline Diffusion Schemes for a Coupled Nonlinear Telegraph System

&
Pages 509-527 | Published online: 14 Oct 2016
 

ABSTRACT

We propose a hybrid of streamline diffusion (SD) method and variational multiscale scheme (VMS) for approximate solution of a coupled nonlinear system of telegraph equations. The reason for using multiscale scheme is due to the fact that, compared to the evolved system, in the primary time iteration steps higher degree schemes in spatial variable are not necessary. On the other hand, the multiscale strategy may be a viewed as a particular type of adaptivity where different scales play the role of coarse or fine refinement procedures. In this setting, certain data and geometric singularities that are better studied through an adaptive approach, which here is replaced by a multiscale scheme. We prove stability estimates and derive optimal convergence rates due to the maximal available regularity of the exact solution. This study concerns both theoretical as well as some numerical aspects. The theoretical part, mainly, concerns the stability and convergence issues whereas in the numerical part, we deal with the construction and of the discretization multiscale schemes. The results are justified through some numerical implementations where, in particular by the constructed multiscale scheme, one may circumvent the above mentioned trouble with the primary time steps.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 944.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.