35
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Development of a metal matrix composite layer on a microalloyed steel surface by dissociating MAX211 Ti2AlC particles using a TIG torch technique

ORCID Icon, , , &
Pages 586-599 | Accepted 30 Jun 2017, Published online: 10 Jul 2017
 

Abstract

A surface engineering method utilised a tungsten inert gas torch to melt a preplaced MAX211, Ti2AlC powder particles into a microalloyed steel substrate with the aim of producing a surface metal matrix composite.. In this study, the two different shielding gases, argon and a mixture of argon + helium (80 + 20%), were used to protect the surfaces under different processing conditions, with the aim of finding the optimal conditions for further studies. An analysis of the morphology, microstructure and hardness profile of the melted zone, showed that in general, samples melted under argon achieved a higher hardness and exhibited a smaller penetration into the substrate compared to melting under a mixture of argon + helium. An XRD study showed that the Ti2AlC powder decomposed to TiC particles dispersed in mainly TiAl.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 396.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.