364
Views
15
CrossRef citations to date
0
Altmetric
Original Articles

Experimental evaluation of occupancy-based energy-efficient climate control of VAV terminal units

, , , , , , , & show all
Pages 469-480 | Received 20 Aug 2014, Accepted 28 Jan 2015, Published online: 12 May 2015
 

Abstract

Results are presented from a nearly week-long experimental evaluation of a scalable control algorithm for a commercial building HVAC system based on real-time measurements of occupancy obtained from motion detectors. The control algorithm decides air flow rate and amount of reheat for each variable air volume terminal box based on real-time measurements of occupancy and space temperature. It is a rule-based controller, so the control computations are simple. The experiments showed that the proposed controller resulted in 37% energy savings over baseline on average without sacrificing indoor climate. In contrast to prior work that reports energy savings without a careful measure of the effect on indoor climate, it is verified that the controller indeed maintains indoor climate as well as the building's baseline controller does. This verification is performed from measurements of a host of environmental variables and analysis of before/after occupant survey results. A complete system required to retrofit existing buildings with the controller is presented, which includes a wireless sensor network and a software execution platform. Two useful observations from this work are: (i) considerable energy savings—along with compliance with ASHRAE ventilation standards—are possible with simple occupancy-based control algorithms that are easy to retrofit; and (ii) these savings are attained with binary occupancy measurements from motion detectors that do not provide occupancy-count measurements. Results also show that there is a large variation in energy savings from zone to zone and from day to day.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 78.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.