7,549
Views
42
CrossRef citations to date
0
Altmetric
Original Articles

Design optimization and validation of high-performance heat exchangers using approximation assisted optimization and additive manufacturing

, ORCID Icon, &
Pages 896-911 | Received 31 Oct 2016, Accepted 18 Apr 2017, Published online: 21 Jul 2017

Figures & data

Fig. 1. Typical CFD computational domain.

Fig. 1. Typical CFD computational domain.

Fig. 2. Air thermos-physical properties as function of temperature and relative humidity.

Fig. 2. Air thermos-physical properties as function of temperature and relative humidity.

Fig. 3. Tube shape parameterization.

Fig. 3. Tube shape parameterization.

Fig. 4. First order analyses I: compactness, material utilization and internal volume.

Fig. 4. First order analyses I: compactness, material utilization and internal volume.

Fig. 5. First order analyses II: fin-to-tube surface ratio.

Fig. 5. First order analyses II: fin-to-tube surface ratio.

Fig. 6. Second order analysis: thermal-hydraulic characteristics of finless and finned surfaces.

Fig. 6. Second order analysis: thermal-hydraulic characteristics of finless and finned surfaces.

Fig. 7. Tube shapes: a. Round; b. Ellipse; c. Eye; d. Airfoil leading edge; e. Airfoil trailing edge.

Fig. 7. Tube shapes: a. Round; b. Ellipse; c. Eye; d. Airfoil leading edge; e. Airfoil trailing edge.

Fig. 8. Local thermal-hydraulic characteristics for round tube at constant Reynolds: a. hydraulic boundary layer; b. temperature gradient at the wall; c. tangential velocity gradient at the wall.

Fig. 8. Local thermal-hydraulic characteristics for round tube at constant Reynolds: a. hydraulic boundary layer; b. temperature gradient at the wall; c. tangential velocity gradient at the wall.

Fig. 9. Local thermal-hydraulic characteristics for round tube at constant velocity: a. hydraulic boundary layer; b. temperature gradient at the wall; c. tangential velocity gradient at the wall.

Fig. 9. Local thermal-hydraulic characteristics for round tube at constant velocity: a. hydraulic boundary layer; b. temperature gradient at the wall; c. tangential velocity gradient at the wall.

Fig. 10. Thermal-hydraulic performance of different tube shapes with same hydraulic diameter.

Fig. 10. Thermal-hydraulic performance of different tube shapes with same hydraulic diameter.

Fig. 11. Design problem: a. Generic finless HX; b. Baseline MCHX.

Fig. 11. Design problem: a. Generic finless HX; b. Baseline MCHX.

Fig. 12. CFD results for the NTHX-001: a. velocity; b. pressure; c. temperature.

Fig. 12. CFD results for the NTHX-001: a. velocity; b. pressure; c. temperature.

Fig. 13. Proof-of-concept NTHX-001.

Fig. 13. Proof-of-concept NTHX-001.

Table 1. NTHX-001 Numerical results compared to the baseline MCHX.

Fig. 14. Numerical optimization framework.

Fig. 14. Numerical optimization framework.

Fig. 15. Parallel parameterized CFD framework.

Fig. 15. Parallel parameterized CFD framework.

Table 2. Design space.

Fig. 16. Scaling, topology and shape variables.

Fig. 16. Scaling, topology and shape variables.

Fig. 17. GCI Analysis.

Fig. 17. GCI Analysis.

Fig. 18. Metamodel verification against 961 random samples.

Fig. 18. Metamodel verification against 961 random samples.

Fig. 19. Optimization results.

Fig. 19. Optimization results.

Fig. 20. Metamodel verification for the optimum designs.

Fig. 20. Metamodel verification for the optimum designs.

Fig. 21. Prototype NTHX-001 and blockage test images.

Fig. 21. Prototype NTHX-001 and blockage test images.

Fig. 22. Wind tunnel facility.

Fig. 22. Wind tunnel facility.

Fig. 23. Experimental energy balance and capacity validation.

Fig. 23. Experimental energy balance and capacity validation.

Fig. 24. NTHX-001 Airside thermal-hydraulic performance validation.

Fig. 24. NTHX-001 Airside thermal-hydraulic performance validation.

Fig. 25. CFD results for the NTHX-030 design: a. magnitude velocity; b. velocity angle; c. turbulence intensity.

Fig. 25. CFD results for the NTHX-030 design: a. magnitude velocity; b. velocity angle; c. turbulence intensity.

Fig. 26. Thermal-hydraulic performance of novel HX's for a wide range of Reynolds numbers.

Fig. 26. Thermal-hydraulic performance of novel HX's for a wide range of Reynolds numbers.