288
Views
0
CrossRef citations to date
0
Altmetric
Pure Mathematics

Layer adapted finite element method for two-parameter singularly perturbed delay parabolic problems

ORCID Icon & | (Reviewing editor:)
Article: 2333626 | Received 29 Dec 2023, Accepted 19 Mar 2024, Published online: 05 Apr 2024

Figures & data

Figure 1. Global numerical solution indices refers to local nodes of arbitrary finite element [xi,xi+1]×[tj,tj+1].

Figure 1. Global numerical solution indices refers to local nodes of arbitrary finite element [xi,xi+1]×[tj,tj+1].

Figure 2. Global numerical solution indices refers to local nodes of arbitrary finite element [xi,xi+1]×[tj,tj+1] after double split of the spatial and temporal finite elements.

Figure 2. Global numerical solution indices refers to local nodes of arbitrary finite element [xi,xi+1]×[tj,tj+1] after double split of the spatial and temporal finite elements.

Figure 3. Graphs of the FE solution of example 5.1 for 32×32 mesh and double mesh grid with parameters ε=1010 and μ=1020..

Figure 3. Graphs of the FE solution of example 5.1 for 32×32 mesh and double mesh grid with parameters ε=10−10 and μ=10−20..

Figure 4. The graph of element-wise absolute maximum error of the FE solution in example 5.1 for 32×32 mesh when the parameters ε=1010 and μ=1020..

Figure 4. The graph of element-wise absolute maximum error of the FE solution in example 5.1 for 32×32 mesh when the parameters ε=10−10 and μ=10−20..

Figure 5. The graph of element-wise absolute maximum error of the FE solution in example 5.1 for 64×64 mesh when the parameters ε=1010 and μ=1020..

Figure 5. The graph of element-wise absolute maximum error of the FE solution in example 5.1 for 64×64 mesh when the parameters ε=10−10 and μ=10−20..

Figure 6. The graph of element-wise absolute maximum error of the FE solution in example 5.1 for 64×64 mesh when the parameters ε=1010 and μ=1020..

Figure 6. The graph of element-wise absolute maximum error of the FE solution in example 5.1 for 64×64 mesh when the parameters ε=10−10 and μ=10−20..

Figure 7. Graphs of the FE solution of example 5.2 for 32×32 mesh and double mesh grid with parameters ε=1010 and μ=1020..

Figure 7. Graphs of the FE solution of example 5.2 for 32×32 mesh and double mesh grid with parameters ε=10−10 and μ=10−20..

Figure 8. The graph of element-wise absolute maximum error of the FE solution in example 5.2 for 32×32 mesh when the parameters ε=1010 and μ=1020.

Figure 8. The graph of element-wise absolute maximum error of the FE solution in example 5.2 for 32×32 mesh when the parameters ε=10−10 and μ=10−20.

Figure 9. Graphs of the FE solution of example 5.2 for 64 × 64 mesh and double mesh grid with parameters ε = 10 − 10 and μ = 10 − 20.

Figure 9. Graphs of the FE solution of example 5.2 for 64 × 64 mesh and double mesh grid with parameters ε = 10 − 10 and μ = 10 − 20.

Figure 10. The graph of element-wise absolute maximum error of the FE solution in example 5.2 for 64 × 64 mesh when the parameters ε = 10 − 10 and μ = 10 − 20.

Figure 10. The graph of element-wise absolute maximum error of the FE solution in example 5.2 for 64 × 64 mesh when the parameters ε = 10 − 10 and μ = 10 − 20.

Table 1. Error estimate and convergence rate of example 5.1, for ε=1010

Table 2. Error estimate and convergence rate of example 5.1, for μ=1010

Table 3. Error estimate and convergence rate of example 5.2, for ε=1010

Table 4. Error estimate and convergence rate of example 5.2, for μ=1010

Figure 11. logarithmic scaled graphs of maximum error versus number of meshes:(a)Example 5.1, and (b) example 5.2.

Figure 11. logarithmic scaled graphs of maximum error versus number of meshes:(a)Example 5.1, and (b) example 5.2.

Table 5. Comparison of the error estimate (EN,M) and rate of convergence (RN,M) of example 5.1, for ε=104 and μ=109