1,393
Views
100
CrossRef citations to date
0
Altmetric
Original Articles

High Hydrostatic Pressure Processing of Fruit and Vegetable Products

, &
Pages 411-425 | Published online: 16 Aug 2006
 

Abstract

High hydrostatic pressure (HHP) as a minimal thermal technology is a valuable tool for microbiologically safe and shelf-stable fruit and vegetable production. Microorganisms and deteriorative enzymes can be inhibited or inactivated depending on the amount of pressure and time applied to the product. The resistance of microorganisms and enzymes to pressure in fruit and vegetable products also is dependent on both the type and the amount of enzymes or microorganisms as well as food composition. While on one hand, microorganisms (other than spores) can be inactivated at mild pressures (< 300 MPa), on the other, enzymes can be very resistant to pressure and their resistance may increase when isolated forms are pressurized. Nevertheless, microbiologically safe fruit and vegetable products can be obtained without change in flavor if temperature is not increased beyond pasteurization temperatures. The remaining enzyme activity in HHP processed fruit and vegetable products can be delayed if a combination of obstacles, such as refrigeration temperatures, low pH, and antibrowning agents, are used to increase the shelf life of these types of products. Therefore, HHP is a promising minimal thermal technology that can be used to deliver more variety of less processed fruit and vegetable products than consumers are demanding today.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,043.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.