78
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Dimension of the Mesh Algebra of a Finite Auslander–Reiten Quiver

&
Pages 2207-2217 | Received 15 Jan 2002, Published online: 11 Dec 2006
 

Abstract

Translation quivers appear naturally in the representation theory of finite dimensional algebras; see, for example, Bongartz and Gabriel (Bongartz, K., Gabriel, P., (Citation1982). Covering spaces in representation theory. Invent. Math. 65:331–378.). A translation quiver defines a mesh algebra over any field. A natural question arises as to whether or not the dimension of the mesh algebra depends on the field. The purpose of this note is to show that the dimension of the mesh algebra of a finite Auslander–Reiten quiver over a field is a purely combinatorial invariant of this quiver. Indeed, our proof yields a combinatorial algorithm for computing this dimension. As a further application, one may use then semicontinuity of Hochschild cohomology of algebras as in Buchweitz and Liu (Buchweitz, R.-O., Lui, S. Hochschild cohomology and representation-finite algebras. Preprint.) to conclude that a finite Auslander–Reiten quiver contains no oriented cycle if its mesh algebra over some field admits no outer derivation.

Acknowledgment

Both authors gratefully acknowledge partial support from the Natural Sciences and Engineering Research Council of Canada.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,187.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.