52
Views
13
CrossRef citations to date
0
Altmetric
Original

Inhibitory Effect of Extracts of Brazilian Marine Algae on Human T-Cell Lymphotropic Virus Type 1 (HTLV-1)-Induced Syncytium Formation In Vitro

, M.Sc., , M.D., D.Sc., , M.Sc., , B.S., , Ph.D., , Ph.D. & , D.Sc. show all
Pages 46-54 | Published online: 22 Apr 2002
 

Abstract

Extracts from four species of Brazilian marine algae collected from the Rio de Janeiro State coast were screened to determine the inhibitory effect on HTLV-1-induced syncytium formation. Before performing the syncytium inhibition assay the 50% cytotoxic dose (CyD50) of the algal extracts was evaluated. The antiviral test was carried out in HeLa cells co-cultured with HTLV-I infected T-cell line (C91/PL cells) in the presence of marine algal extracts in the concentration inferior to that corresponding to the CyD50. It was observed that co-cultured cells exposed to Ulva fasciata extract showed 60.2% syncytium inhibition at a concentration of 2.5%. At 5% concentration, Sargassum vulgare and Vidalia obtusiloba extracts presented 78.8 and 76% syncytium inhibition, respectively. The best inhibitory activity was observed with Laminaria abyssalis that presented 100% syncytium inhibition at a concentration of 2.5%. This work shows that extracts of marine algae, mainly L. abyssalis extract, are able to inhibit the cell-to-cell contact essential for the spreading of the virus and could be useful to prevent the infection.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,193.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.