129
Views
23
CrossRef citations to date
0
Altmetric
Research Article

Polysaccharide Matrices for Microbially Triggered Drug Delivery to the Colon

&
Pages 143-150 | Published online: 03 Nov 2004
 

Abstract

Matrix tablets were prepared using xanthan gum (XG) and guar gum (GG) in varying proportions, and the suitability of the prepared tablets was evaluated for colon specific drug delivery. Indomethacin was used as a model drug. The ability of the prepared matrices to retard drug release in the upper gastrointestinal tract (GIT) and to undergo enzymatic hydrolysis by the colonic bacteria was evaluated. For this, drug release studies were carried out in the presence of rat cecal content. Further cecal content of rats with induced enzymatic activity were used. To ascertain the role of bacterial flora in carrying out the hydrolysis of the tablet, cecal content of rats treated with antibiotics were used in the dissolution media. Presence of XG in combination with GG in the tablets could retard drug release in the conditions of the upper GIT. However, the presence of GG and starch made these matrices microbially degradable. Guar gum alone as a drug release‐retarding excipient in the matrices does not achieve the desired retardation. Presence of XG in the tablets not only retards the initial drug release from the tablets, but due to high swelling, makes them more vulnerable to digestion by the microbial enzymes in the colon.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,085.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.