219
Views
27
CrossRef citations to date
0
Altmetric
Original

COMPARISON OF THE SECRETORY PROPERTIES OF FOUR INSULIN-SECRETING CELL LINES

, , &
Pages 35-47 | Published online: 07 Jul 2009
 

Abstract

The insulin-secretory responsiveness of four popular and widely used insulin-secreting cells lines (RINm5F, HIT-T15, INS-1 and BRIN-BD11cells) to a range of stimuli including glucose, amino acids, neurotransmitters, peptide hormones and sulphonylureas was studied. Differences were seen in the pattern of responsiveness of the cell lines to the various modulators of insulin release. While these studies revealed that INS-1 cells had the highest insulin content, only BRIN-BD11 cells exhibited a significant step-wise insulin secretory response to increasing glucose concentrations. BRIN-BD11 cells also showed pronounced insulin responses to leucine, KIC, L-arginine, L-alanine and palmitic acid. All the cell lines tested gave significant responses to the neurotransmitters carbachol and glibenclamide with increased insulin release. A comparison was made between the functional characteristics of the various cell lines with those of freshly isolated rat islets. This illustrated the general value of each cell line as a model for studies of insulin secretion. Electrofusion-derived BRIN-BD11 cells appeared to closely mimic the glucose sensitivity and overall secretory performance of normal rat islets.

ACKNOWLEDGMENTS

This study was supported in part by funding from the British Diabetic Association and University of Ulster Research Selectivity Funding.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,388.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.