47
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

FORCED EXPRESSION OF BCL-2 AND BCL-xL BY NOVEL WATER-SOLUBLE FULLERENE, C60(GLUCOSAMINE)6, REDUCES RENAL ISCHEMIA/REPERFUSION-INDUCED OXIDATIVE STRESS

, , , &
Pages 77-88 | Received 15 May 2000, Published online: 06 Feb 2007
 

Abstract

Apoptosis induced by oxidative stress, especially reactive oxygen species, resulting from ischemia/reperfusion would lead to organ dysfunction. C60(glucosamine)6, a water-soluble fullerene with strong free radical scavenging activity, was applied to evaluate its effect on renal ischemia/reperfusion-induced apoptosis formation and superoxide generation. C60(glucosamine)6 pretreatment, but not posttreatment, significantly reduced renal ischemia/reperfusion-induced apoptosis and superoxide generation and, consequently, ameliorated renal hemodynamic effects. Up-regulation in bcl-2 and bcl-xL of the rat kidney was evident in C60(glucosamine)6 pretreated, posttreated, and nontreated groups. However, exaggerated forced expression of bcl-2 and bcl-xL was found in the C60(glucosamine)6 pretreated group. Our results conclude that forced expression of bcl-2 and bcl-xL by the novel water-soluble fullerene, C60(glucosamine)6, can reduce renal ischemia/ reperfusion-induced oxidative stress.

ACKNOWLEDGMENT

This work was supported by the National Science Council of the Republic of China (NSC89-2314-B002-119 and NSC89-2314-B002-148) and partly by the National Taiwan University Hospital (NTUH89A014).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 906.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.