22
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

ENERGY LOSS AND ENERGY STRAGGLING OF LIGHT IONS IN FULLERITE

, , , , &
Pages 197-209 | Received 11 Sep 2000, Published online: 19 Aug 2006
 

Abstract

To determinate the stopping cross section in fullerite a feasible approach, taking into account the high radiation sensitivity and mechanical fragility of fullerite films, should be employed. In this work, the stopping cross sections of 1H, 3H, 4He and 7Li ions for several selected energies were measured by Rutherford backscattering, neutron depth profiling and alpha spectroscopy using sandwich structures of samples composed of fullerite deposited on a firm substrate (Si, steel) with an intermediate marker (Au, N, Li, B, Pu). In addition, ion transmission through a thin C film supporting a fullerite layer was also utilized. The measured stopping cross sections follow the theoretical predictions calculated for carbon, but are systematically (10–35%) higher than the theoretical ones (with the exception of 5 — 5.5 MeV 4He). The observed deviation of the experimental data can partly be explained by the chemical state effects in fullerite, which accounts for about 20–50% of the difference. The measured energy straggling exceeds Bohr's value by a factor of about 2 for alpha spectroscopy and ion transmission, and 2.5 or 9.5 for Rutherford backscattering and neutron depth profiling, respectively. The discrepancy can be explained by a thickness variation, such as surface roughness of the fullerite films.

ACKNOWLEDGMENTS

The work was supported by Grant Agency of the Czech Republic under the projects No. 202-96-0077 and 202-97-K038. One of the authors (J.V.) would like to express his thanks for support of the work also by Japan Atomic Energy Research Institute under the program of JAERI Research Fellowship.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 906.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.