38
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Sensitivity Analysis of Interfacial Tension Predictions for Hydrocarbon Fluids

Pages 1161-1172 | Received 19 Jan 2003, Accepted 25 Feb 2003, Published online: 03 Dec 2010
 

Abstract

The interfacial tension (IFT) of hydrocarbon fluids is commonly predicted by either the parachor method or the scaling law. The methods require equilibrium liquid and vapor phase composition and density. An equation of state would normally be required if experimental values are not available. However, the computation of density for simple hydrocarbons and reservoir fluids, despite the important advances achieved by cubic equations of state, still remains a weak link in these types of calculations. Thus, there exists a need to investigate the qualitative and quantitative effects, of such inaccuracies in the density, on IFT predictions. Moreover, the study presented in this work would be useful in reservoir engineering and enhanced oil recovery calculations. The results presented in this work indicate that the methods are highly sensitive to the inaccuracies in the density of both the liquid and the vapor phases. An error of around 10% in the liquid or the vapor density can result in an error of up to 200% in the estimated IFT. Two binary and one ternary mixture for which measured data on IFT, composition and density is reported in the literature form the basis of this study.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 855.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.