53
Views
16
CrossRef citations to date
0
Altmetric
Original Articles

POLYESTERIMIDE-MODIFIED BISMALEIMIDE RESINS. I. EFFECT OF POLYESTERIMI DE CONTENT

, , &
Pages 825-836 | Received 01 Nov 2001, Published online: 07 Feb 2007
 

ABSTRACT

A novel polyesterimide (PEsI-M) was used to improve toughness of bismaleimide (BMI) resin composed of bis(4-maleimidediphenyl) methane (BDM) and O,O′-diallyl bisphenol A (DBA). Morphologies of modified resins changed from spherical particles to inverted phase structures, depending on PEsI-M's content based on the observation of scanning electronic microscopy (SEM). PEsI-M was an effective morphology modifier so that loading of 12 pbw resulted in a diverted phase structure. Dynamic mechanical analysis (DMA), rheometrics mechanical spectroscopy (RMS) and differential scanning calorimetry (DSC) were respectively used to investigate the dynamic mechanical behavior, and the gelation time and the curing extent of unmodified and modified BMI resins. The fairly uniform morphology in 15 pbw PEsI-M modified system cured at 180°C suggests that the phase separation might take place via a spinodal decomposition mechanism. The fracture energy (G IC ) increased with the increase of PEsI-M content in the modified system. G IC of 15 pbw PEsI-M modified system was 0.63 times larger than that of the unmodified BMI resin.

ACKNOWLEDGMENT

Project 50043011 supported by Project 50043011, National Natural Science Foundation of China.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,060.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.