224
Views
24
CrossRef citations to date
0
Altmetric
Original Articles

Swelling Behavior of Semi‐Interpenetrating Polymer Network Hydrogels Based on Chitosan and Poly(acryl amide)

, , &
Pages 1073-1083 | Received 01 Sep 2004, Accepted 01 Mar 2005, Published online: 07 Feb 2007
 

Abstract

Semi‐interpenetrating polymer networks (semi‐IPNs) composed of chitosan and polyacrylamide (PAAm) hydrogels have been prepared, and the effect of changing pH, temperature, ionic concentration, and applied electric fields on the swelling of the hydrogels was investigated. The swelling kinetics increased rapidly, reaching equilibrium within 60 min. The semi‐IPN hydrogels exhibited a relatively high swelling ratios of 385%–569% at T=25°C. The swelling ratio increased with decreasing pH below pH=7 due to the dissociation of ionic bonds. The swelling ratio of the semi‐IPN hydrogels was pH, ionic concentration, temperature, and electric field dependent. Differential scanning calorimetry (DSC) was used to determine the volume of free water in the semi‐IPN hydrogels, which was found to increase with increasing PAAm content.

Acknowledgement

This work is the result of research activities of the Advanced Biometric Research Center (ABRC) supported by the Korean Science and Engineering Foundation (KOSEF).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,060.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.