36
Views
8
CrossRef citations to date
0
Altmetric
Research Article

Formation and Stability of the Dispersed Particles Composed of Retinyl Palmitate and Phosphatidylcholine

&
Pages 39-45 | Received 29 Sep 1998, Accepted 03 Jun 1999, Published online: 18 Jan 2000
 

Abstract

The purpose of this study was to develop an intravenous formulation composed of retinyl palmitate (RP) for the treatment of cancer. RP was dispersed with soybean phosphatidylcholine (PC) using sonication and the dispersal mechanism was evaluated by characterizing the dispersed particles using dynamic light-scattering, fluorescence spectroscopy, and surface monolayer techniques. The dispersions in the RP mole fraction range of 0.1–0.8 were stable at room temperature for 3 days. A limited amount of RP was incorporated into PC bilayer membranes (approximately 3 mol%). The excess RP separated from the PC bilayers was stabilized as emulsion particles by the PC surface monolayer. When the PC content was less than the solubility in RP, the PC monolayer did not completely cover the hydrophobic RP particle surfaces and separation into oil/water occurred. The miscibility between RP and PC and the lipid composition were critically important for the stability of the dispersed particles (coexistence of emulsion particles [surface monolayer of PC pl core of RP] with vesicular particles [bilayer]) of the lipid mixtures.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 523.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.