70
Views
18
CrossRef citations to date
0
Altmetric
Original Articles

Role of Uronic Acid Polymers on the Availability of Iron to Plants

, , , &
Pages 1927-1941 | Published online: 14 Feb 2007
 

Abstract

The interaction between polygalacturonic acid and Fe(III) was studied in the presence and in the absence of pyruvic, malic, and citric acids. Kinetical data and FT‐IR analyses show that the polysaccharidic matrix acts as an accumulator of Fe(III) and that the metal ion interacts electrostatically with both the carboxylic and other functional groups of the polysaccharidic matrix. Copper(II) ions, which have a high affinity towards the carboxylic groups of the polysaccharide, do not influence markedly the Fe(III) absorption indicating that the carboxylic groups are not determining in the Fe(III) accumulation process. Furthermore, the results suggest that iron inside the fibrils is under an hydrolyzed form or as Fe(III) hydroxy polymer. In the presence of malic and citric acids the amount of Fe(III) accumulated at pH 4.7 and 6.0 is markedly lower than that found in the presence of pyruvic acid what was attributed to the higher affinity of citric and malic acid towards the metal ion.

Acknowledgments

The financial support by MURST (ex 40%) and Interreg III are gratefully acknowledged.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 495.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.