25
Views
13
CrossRef citations to date
0
Altmetric
Article

Activation of the S-Phase Checkpoint Inhibits Degradation of the F-Box Protein Dia2

&
Pages 160-171 | Received 11 May 2009, Accepted 14 Oct 2009, Published online: 20 Mar 2023
 

Abstract

A stable genome is critical to cell viability and proliferation. During DNA replication, the S-phase checkpoint pathway responds to replication stress. In budding yeast, the chromatin-bound F-box protein Dia2 is required to maintain genomic stability and may help replication complexes overcome sites of damaged DNA and natural fragile regions. SCF (Skp1/Cul1/F-box protein) complexes are modular ubiquitin ligases. We show here that Dia2 is itself targeted for ubiquitin-mediated proteolysis and that activation of the S-phase checkpoint pathway inhibits Dia2 protein degradation. S-phase checkpoint mutants fail to stabilize Dia2 in response to replication stress. Deletion of DIA2 from these checkpoint mutants exacerbates their sensitivity to hydroxyurea, suggesting that stabilization of Dia2 contributes to the replication stress response. Unlike the case for other F-box proteins, deletion of the F-box domain in Dia2 does not stabilize the protein. Rather, an N-terminal domain that is also required for nuclear localization is necessary for degradation. When a strong nuclear localization signal (NLS) is added to dia2 mutants lacking this domain, the Dia2 protein is both stable and nuclear. Together, our results suggest that Dia2 protein turnover does not involve an autocatalytic mechanism and that Dia2 proteolysis is inhibited by activation of the replication stress response.

View publisher note:
Articles of Significant Interest Selected from This Issue by the Editors

This work was funded by NIH grant R01GM076663 and awards from the Minnesota Medical Foundation and the University of Minnesota Graduate School Grant-in-Aid to D.M.K.

We thank Yolanda Sanchez (Dartmouth Medical School), Anja-Katrin Bielinsky (University of Minnesota), and J. Wade Harper (Harvard Medical School) for gifts of strains and reagents.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 265.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.