75
Views
340
CrossRef citations to date
0
Altmetric
Gene Expression

Classification of gas5 as a Multi-Small-Nucleolar-RNA (snoRNA) Host Gene and a Member of the 5′-Terminal Oligopyrimidine Gene Family Reveals Common Features of snoRNA Host Genes

&
Pages 6897-6909 | Received 10 Jul 1998, Accepted 18 Aug 1998, Published online: 28 Mar 2023
 

ABSTRACT

We have identified gas5 (growth arrest-specific transcript 5) as a non-protein-coding multiple small nucleolar RNA (snoRNA) host gene similar to UHG (U22 host gene). Encoded within the 11 introns of the mouse gas5 gene are nine (10 in human) box C/D snoRNAs predicted to function in the 2′-O-methylation of rRNA. The only regions of conservation between mouse and humangas5 genes are their snoRNAs and 5′-end sequences. Mapping the 5′ end of the mouse gas5 transcript demonstrates that it possesses an oligopyrimidine tract characteristic of the 5′-terminal oligopyrimidine (5′TOP) class of genes. Arrest of cell growth or inhibition of translation by cycloheximide, pactamycin, or rapamycin—which specifically inhibits the translation of 5′TOP mRNAs—results in accumulation of the gas5 spliced RNA. Classification of gas5 as a 5′TOP gene provides an explanation for why it is a growth arrest specific transcript: while the spliced gas5 RNA is normally associated with ribosomes and rapidly degraded, during arrested cell growth it accumulates in mRNP particles, as has been reported for other 5′TOP messages. Strikingly, inspection of the 5′-end sequences of currently known snoRNA host gene transcripts reveals that they all exhibit features of the 5′TOP gene family.

ACKNOWLEDGMENTS

We are grateful to Mei-Di Shu, Jahan Moslehi, and Zoe Bellows for their technical assistance and Timothy McConnell, Leo Otake, and Kazio Tycowski for their comments on the manuscript. We also thank Lennart Philipson, Tamas Kiss, and Witold Filipowicz (with Pawel Pelczar) for sharing unpublished data and Kazio Tycowski for his many helpful insights.

This work was supported by NIH grant GM-26154.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 265.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.