4
Views
49
CrossRef citations to date
0
Altmetric
Gene Expression

MOT1 Can Activate Basal Transcription In Vitro by Regulating the Distribution of TATA Binding Protein between Promoter and Nonpromoter Sites

, , &
Pages 2835-2845 | Received 10 Dec 1998, Accepted 13 Jan 1999, Published online: 28 Mar 2023
 

Abstract

MOT1 is an ATPase which can dissociate TATA binding protein (TBP)-DNA complexes in a reaction requiring ATP hydrolysis. Consistent with this observation, MOT1 can repress basal transcription in vitro. Paradoxically, however, some genes, such as HIS4, appear to require MOT1 as an activator of transcription in vivo. To further investigate the function of MOT1 in basal transcription, we performed in vitro transcription reactions using yeast nuclear extracts depleted of MOT1. Quantitation of MOT1 revealed that it is an abundant protein, with nuclear extracts from wild-type cells containing a molar excess of MOT1 over TBP. Surprisingly, MOT1 can weakly activate basal transcription in vitro. This activation by MOT1 is detectable with amounts of MOT1 that are approximately stoichiometric to TBP. With amounts of MOT1 similar to those present in wild-type nuclear extracts, MOT1 behaves as a weak repressor of basal transcription. These results suggest that MOT1 might activate transcription via an indirect mechanism in which limiting TBP can be liberated from nonpromoter sites for use at promoters. In support of this idea, excess nonpromoter DNA sequesters TBP and represses transcription, but this effect can be reversed by addition of MOT1. These results help to reconcile previous in vitro and in vivo results and expand the repertoire of transcriptional control strategies to include factor-assisted redistribution of TBP between promoter and nonpromoter sites.

ACKNOWLEDGMENTS

We thank Fred Winston, John Chicca, Frank Pugh, Joe Reese, members of the Auble and Weil laboratories, and the University of Virginia Sixes and Sevens Research Discussion Group for insightful discussions.

This work was supported by grants from the National Institutes of Health (GM55763 to D.T.A. and GM52461 to P.A.W.).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 265.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.