16
Views
32
CrossRef citations to date
0
Altmetric
Cell Growth and Development

Amino- and Carboxy-Terminal PEST Domains Mediate Gastrin Stabilization of Rat l-Histidine Decarboxylase Isoforms

&
Pages 4932-4947 | Received 12 Nov 1999, Accepted 17 Mar 2000, Published online: 28 Mar 2023
 

Abstract

Control of enzymatic function by peptide hormones can occur at a number of different levels and can involve diverse pathways that regulate cleavage, intracellular trafficking, and protein degradation. Gastrin is a peptide hormone that binds to the cholecystokinin B-gastrin receptor and regulates the activity ofl-histidine decarboxylase (HDC), the enzyme that produces histamine. Here we show that gastrin can increase the steady-state levels of at least six HDC isoforms without affecting HDC mRNA levels. Pulse-chase experiments indicated that HDC isoforms are rapidly degraded and that gastrin-dependent increases are due to enhanced isoform stability. Deletion analysis identified two PEST domains (PEST1 and PEST2) and an intracellular targeting domain (ER2) which regulate HDC protein expression levels. Experiments with PEST domain fusion proteins demonstrated that PEST1 and PEST2 are strong and portable degradation-promoting elements which are positively regulated by both gastrin stimulation and proteasome inhibition. A chimeric protein containing the PEST domain of ornithine decarboxylase was similarly affected, indicating that gastrin can regulate the stability of other PEST domain-containing proteins and does so independently of antizyme/antizyme inhibitor regulation. At the same time, endoplasmic reticulum localization of a fluorescent chimera containing the ER2 domain of HDC was unaltered by gastrin stimulation. We conclude that gastrin stabilization of HDC isoforms is dependent upon two transferable and sequentially unrelated PEST domains that regulate degradation. These experiments revealed a novel regulatory mechanism by which a peptide hormone such as gastrin can disrupt the degradation function of multiple PEST-domain-containing proteins.

ACKNOWLEDGMENTS

We thank Ted Koh and Rocchina Colucci for help with animal experiments and useful discussion. We also thank Bill Rees at the Rowett Institute for critically reviewing the manuscript and Jeffrey Sussman (T.M.W.A.C.) for technical assistance.

T.C.W. is supported by NIH RO1 grant DK48077.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 265.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.