33
Views
55
CrossRef citations to date
0
Altmetric
Transcriptional Regulation

Analysis of Sequence Upstream of the Endogenous H19 Gene Reveals Elements Both Essential and Dispensable for Imprinting

, , , &
Pages 2450-2462 | Received 10 Oct 2001, Accepted 12 Jan 2002, Published online: 28 Mar 2023
 

Abstract

Imprinting of the linked and oppositely expressed mouse H19 and Igf2 genes requires a 2-kb differentially methylated domain (DMD) that is located 2 kb upstream of H19. This element is postulated to function as a methylation-sensitive insulator. Here we test whether an additional sequence 5′ of H19 is required for H19 and Igf2 imprinting. Because repetitive elements have been suggested to be important for genomic imprinting, the requirement of a G-rich repetitive element that is located immediately 3′ to the DMD was first tested in two targeted deletions: a 2.9-kb deletion (ΔDMDΔG) that removes the DMD and G-rich repeat and a 1.3-kb deletion (ΔG) removing only the latter. There are also four 21-bp GC-rich repetitive elements within the DMD that bind the insulator-associated CTCF (CCCTC-binding factor) protein and are implicated in mediating methylation-sensitive insulator activity. As three of the four repeats of the 2-kb DMD were deleted in the initial 1.6-kb ΔDMD allele, we analyzed a 3.8-kb targeted allele (Δ3.8kb-5′H19), which deletes the entire DMD, to test the function of the fourth repeat. Comparative analysis of the 5′ deletion alleles reveals that (i) the G-rich repeat element is dispensable for imprinting, (ii) the ΔDMD and ΔDMDΔG alleles exhibit slightly more methylation upon paternal transmission, (iii) removal of the 5′ CTCF site does not further perturb H19 and Igf2 imprinting, suggesting that one CTCF-binding site is insufficient to generate insulator activity in vivo, (iv) the DMD sequence is required for full activation of H19 and Igf2, and (v) deletion of the DMD disrupts H19 and Igf2 expression in a tissue-specific manner.

We thank J. Richa and the University of Pennsylvania Transgenic Core Facility for the production of chimeric mice. We thank Nora Engel and Raluca Verona for comments on the manuscript.

This work was supported by U.S. Public Health Service grant GM51279 and the Howard Hughes Medical Institute. J.L.T. was supported by National Research Service Award postdoctoral fellowship GM18458. M.R.W.M. was supported by the Lalor Foundation.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 265.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.