8
Views
33
CrossRef citations to date
0
Altmetric
Transcriptional Regulation

Distinct Transcriptional Pathways Regulate Basal and Activated Major Histocompatibility Complex Class I Expression

, , , &
Pages 3377-3391 | Received 14 Jan 2003, Accepted 25 Feb 2003, Published online: 27 Mar 2023
 

Abstract

Transcription of major histocompatibility complex (MHC) class I genes is regulated by both tissue-specific (basal) and hormone/cytokine (activated) mechanisms. Although promoter-proximal regulatory elements have been characterized extensively, the role of the core promoter in mediating regulation has been largely undefined. We report here that the class I core promoter consists of distinct elements that are differentially utilized in basal and activated transcription pathways. These pathways recruit distinct transcription factor complexes to the core promoter elements and target distinct transcription initiation sites. Class I transcription initiates at four major sites within the core promoter and is clustered in two distinct regions: “upstream” (−14 and −18) and “downstream” (+12 and +1). Basal transcription initiates predominantly from the upstream start site region and is completely dependent upon the general transcription factor TAF1 (TAFII250). Activated transcription initiates predominantly from the downstream region and is TAF1 (TAFII250) independent. USF1 augments transcription initiating through the upstream start sites and is dependent on TAF1 (TAFII250), a finding consistent with its role in regulating basal class I transcription. In contrast, transcription activated by the interferon mediator CIITA is independent of TAF1 (TAFII250) and focuses initiation on the downstream start sites. Thus, basal and activated transcriptions of an MHC class I gene target distinct core promoter domains, nucleate distinct transcription initiation complexes and initiate at distinct sites within the promoter. We propose that transcription initiation at the core promoter is a dynamic process in which the mechanisms of core promoter function differ depending on the cellular environment.

ACKNOWLEDGMENTS

We gratefully acknowledge Joshua Meyers and Stacey McLaughlin for their technical assistance and John Brady, David Levens, and Danny Reinberg for helpful discussion and critical review of the manuscript.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 265.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.