35
Views
55
CrossRef citations to date
0
Altmetric
Cell Growth and Development

TRAM2 Protein Interacts with Endoplasmic Reticulum Ca2+ Pump Serca2b and Is Necessary for Collagen Type I Synthesis

, , , &
Pages 1758-1768 | Received 30 Apr 2003, Accepted 03 Nov 2003, Published online: 27 Mar 2023
 

Abstract

Cotranslational insertion of type I collagen chains into the lumen of the endoplasmic reticulum (ER) and their subsequent folding into a heterotrimeric helix is a complex process which requires coordinated action of the translation machinery, components of translocons, molecular chaperones, and modifying enzymes. Here we describe a role for the protein TRAM2 in collagen type I expression in hepatic stellate cells (HSCs) and fibroblasts. Activated HSCs are collagen-producing cells in the fibrotic liver. Quiescent HSCs produce trace amounts of type I collagen, while upon activation collagen synthesis increases 50- to 70-fold. Likewise, expression of TRAM2 dramatically increases in activated HSCs. TRAM2 shares 53% amino acid identity with the protein TRAM, which is a component of the translocon. However, TRAM2 has a C terminus with only a 15% identity. The C-terminal part of TRAM2 interacts with the Ca2+ pump of the ER, SERCA2b, as demonstrated in a Saccharomyces cerevisiae two-hybrid screen and by immunoprecipitations in human cells. TRAM2 also coprecipitates with anticollagen antibody, suggesting that these two proteins interact. Deletion of the C-terminal part of TRAM2 inhibits type I collagen synthesis during activation of HSCs. The pharmacological inhibitor of SERCA2b, thapsigargin, has a similar effect. Depletion of ER Ca2+ with thapsigargin results in inhibition of triple helical collagen folding and increased intracellular degradation. We propose that TRAM2, as a part of the translocon, is required for the biosynthesis of type I collagen by coupling the activity of SERCA2b with the activity of the translocon. This coupling may increase the local Ca2+ concentration at the site of collagen synthesis, and a high Ca2+ concentration may be necessary for the function of molecular chaperones involved in collagen folding.

This work was supported in part by National Institutes of Health grant 1R01DK59466-01A1 to B.S.

The expression plasmid for human SERCA2b was a kind gift of J. Lytton, University of Calgary, Calgary, Canada.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 265.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.