88
Views
119
CrossRef citations to date
0
Altmetric
Cell Growth and Development

How Many Mutant p53 Molecules Are Needed To Inactivate a Tetramer?

, , &
Pages 3536-3551 | Received 07 Dec 2003, Accepted 23 Jan 2004, Published online: 27 Mar 2023
 

Abstract

The tumor suppressor p53 is transcription factor composed of four identical subunits. The majority of the mutations in p53 are missense mutations that impair DNA binding. On the other hand, the p53-related p63 and p73 genes are rarely mutated, but many cell types express natural variants lacking the N-terminal transactivation domain (NΔ). Compelling evidence indicates that both the DNA binding-defective and NΔ mutants can impair the function of wild-type p53 in a dominant-negative manner. Interestingly, it is uncertain how many mutant subunit(s) a p53 tetramer can tolerate. In this study, we first made theoretical predictions based on the number of mutant p53 monomers needed to inactivate a tetramer and then tested how well the experimental data fit the predicted values. Surprisingly, these experiments reveal that DNA binding-defective p53 mutants (R249S and R273H) are very ineffective in impairing the transcriptional activity of p53: at least three mutants are required to inactivate a tetramer. In marked contrast, p53NΔ is a very potent inhibitor of p53: one NΔ subunit per tetramer is sufficient to abolish the transcriptional activity. DNA binding is not necessary for the NΔ proteins to inactivate p53. Similarly, NΔ variants of p63 and p73 are also powerful inhibitors of members of the p53 family. These results have important implications for our thinking about the mechanism of tumorigenesis involving missense p53 mutants or the N-terminally truncated isoforms.

We thank the members of the Poon laboratory for critical comments on the manuscript.

This work was supported in part by grants from the Research Grants Council grant HKUST6129/02 M and University Grants Council grant HIA03/04.SC01 to R.Y.C.P. R.Y.C.P. is a Croucher Foundation Senior Fellow.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 265.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.