28
Views
88
CrossRef citations to date
0
Altmetric
Article

Hemin-Mediated Regulation of an Antioxidant-Responsive Element of the Human Ferritin H Gene and Role of Ref-1 during Erythroid Differentiation of K562 Cells

, , , &
Pages 2845-2856 | Received 08 Sep 2005, Accepted 11 Jan 2006, Published online: 27 Mar 2023
 

Abstract

An effective utilization of intracellular iron is a prerequisite for erythroid differentiation and hemoglobinization. Ferritin, consisting of 24 subunits of H and L, plays a crucial role in iron homeostasis. Here, we have found that the H subunit of the ferritin gene is activated at the transcriptional level during hemin-induced differentiation of K562 human erythroleukemic cells. Transfection of various 5′ regions of the human ferritin H gene fused to a luciferase reporter into K562 cells demonstrated that hemin activates ferritin H transcription through an antioxidant-responsive element (ARE) that is responsible for induction of a battery of phase II detoxification genes by oxidative stress. Gel retardation and chromatin immunoprecipitation assays demonstrated that hemin induced binding of cJun, JunD, FosB, and Nrf2 b-zip transcription factors to AP1 motifs of the ferritin H ARE, despite no significant change in expression levels or nuclear localization of these transcription factors. A Gal4-luciferase reporter assay did not show activation of these b-zip transcription factors after hemin treatment; however, redox factor 1 (Ref-1), which increases DNA binding of Jun/Fos family members via reduction of a conserved cysteine in their DNA binding domains, showed induced nuclear translocation after hemin treatment in K562 cells. Consistently, Ref-1 enhanced Nrf2 binding to the ARE and ferritin H transcription. Hemin also activated ARE sequences of other phase II genes, such as GSTpi and NQO1. Collectively, these results suggest that hemin activates the transcription of the ferritin H gene during K562 erythroid differentiation by Ref-1-mediated activation of these b-zip transcription factors to the ARE.

We thank T. Curran for sharing Ref-1 plasmid DNA with us.

This work was supported in part by the National Institutes of Health research grant DK-60007 to Y. Tsuji. K. Hailemariam was supported by the National Institutes of Health supplement grant DK-60007S and the National Institute of Environmental Health Sciences training grant ES-007046.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 265.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.