122
Views
0
CrossRef citations to date
0
Altmetric
News and Views

Effect of alloying by transitional refractory metals on the microstructure and thermal stability of Al–5Zn–3Mg alloys

, , , &
Pages 13-16 | Published online: 24 Mar 2014
 

Abstract

The effect of additions of transitional refractory metals on the structure and properties of Al–Zn–Mg alloys, made by ingot and PM routes, was investigated. The strength of the ingot alloys especially is increased by scandium and zirconium. The modifying action of scandium inhibits recrystallisation and precipitation of the fine-grained coherent Al3(Sc1–xZrx) phase. The effect is weaker in PM alloys where the ultra-high cooling rate during high pressure water atomisation produces the fine-grained structure. PM semi-products of the base composition Al–5Zn–3Mg and alloys without scandium are not recrystallised during heating to 500°C, whereas cast alloys of similar composition recrystallised on the hot extrusion stage at 400–450°C. Of the Sc alloys, Al–5Zn–3Mg–0·5Mn–0·7Zr–0·3Sc showed the highest strength (UTS = 651 MPa, YS = 596 MPa), whereas of the PM alloys without scandium Al–5Zn–3Mg–0·85Zr–0·22Cr–0·17Ni–0·15Ti alloy showed UTS = 618 MPa and YS = 553 MPa. At melt cooling rates of 105–106 K s–1 the total content of transitional refractory metals must not exceed 1·5–1·7 wt-% and total content (Zn+Mg) should be <8 wt-% at a Zn/Mg ratio of 5:3.

Acknowledgements

The authors are grateful to Dr A. Sirko for assistance in the mechanical properties studies, to Dr N. Danilenko for assistance in TEM and to Dr A. Sameljuk for assistance in SEM. This paper is based on a presentation at Euro PM 2012, organised by EPMA in Basel, Switzerland on 16–19 September 2012.

Log in via your institution

Log in to Taylor & Francis Online

There are no offers available at the current time.

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.