253
Views
12
CrossRef citations to date
0
Altmetric
Original Research Papers

Hot corrosion resistance of gas turbine materials in combusted syngas environments

, , &
Pages 177-187 | Received 16 Apr 2014, Accepted 29 May 2014, Published online: 19 Jan 2015
 

Abstract

To reduce CO2 emissions, there is interest in a new generation of industrial gas turbines operating in advanced integrated gasification combined cycles (IGCC) with the option for pre-combustion CO2 removal systems. These gas turbines may be fired on syngas, cleaned H2 rich syngas, or natural gas, and this will alter the hot corrosion experienced by components in the hot gas path. Deposit recoat laboratory tests have looked at the response of 11 state-of-the-art materials systems under the expected IGCC conditions. MTData has been used to calculate the optimal deposits under the temperature and gas conditions for these tests. Studies of metal loss have helped assess quantitatively the resistance of the different materials systems, while microscopy techniques have given information on the degradation mechanisms experienced. Rene 80 has been selected to demonstrate the data from these tests and shows the most significant metal loss under partially cleaned syngas conditions.

Acknowledgement

The authors would like to acknowledge the support of the European Union’s Framework 7 H2-IGCC project (grant number FP7-239349).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 438.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.